
38 CHAPTER 3. FINITE MARKOV DECISION PROCESSES

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in a Markov decision process.

its action, the agent receives a numerical reward , Rt+1 2 R ⇢ R, and finds itself in a new state, St+1.4

The MDP and agent together thereby give rise to a sequence or trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite number of
elements. In this case, the random variables Rt and St have well defined discrete probability distribu-
tions dependent only on the preceding state and action. That is, for particular values of these random
variables, s0 2 S and r 2 R, there is a probability of those values occurring at time t, given particular
values of the preceding state and action:

p(s0, r |s, a)
.
= Pr{St =s0, Rt =r | St�1 =s, At�1 =a}, (3.2)

for all s0, s 2 S, r 2 R, and a 2 A(s). The dot over the equals sign in this equation reminds us that it
is a definition (in this case of the function p) rather than a fact that follows from previous definitions.
The function p : S ⇥ R ⇥ S ⇥ A ! [0, 1] is an ordinary deterministic function of four arguments. The ‘|’
in the middle of it comes from the notation for conditional probability, but here it just reminds us that
p specifies a probability distribution for each choice of s and a, that is, that
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p(s0, r |s, a) = 1, for all s 2 S, a 2 A(s). (3.3)

The probabilities given by the four-argument function p completely characterize the dynamics of a
finite MDP. From it, one can compute anything else one might want to know about the environment,
such as the state-transition probabilities (which we denote, with a slight abuse of notation, as a three-
argument function p : S ⇥ S ⇥ A ! [0, 1]),

p(s0 |s, a)
.
= Pr{St =s0 | St�1 =s, At�1 =a} =
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p(s0, r |s, a). (3.4)

We can also compute the expected rewards for state–action pairs as a two-argument function r : S⇥A !
R:

r(s, a)
.
= E[Rt | St�1 =s, At�1 =a] =
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p(s0, r |s, a), (3.5)

or the expected rewards for state–action–next-state triples as a three-argument function r : S⇥A⇥S !
R,

r(s, a, s0)
.
= E[Rt | St�1 =s, At�1 =a, St = s0] =
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p(s0, r |s, a)

p(s0 |s, a)
. (3.6)

it simply as A.

4
We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next reward and next

state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are widely used in the literature.


