
Introduction to Reinforcement 
Learning



Consider a trader with a large inventory, storage has a cost proportional to size of 
stock 

Each day, the trader is faced with the following choices 

A. Order N items to add the current stock 

B. Do nothing, i.e. keep current stock 

Trader is paid money daily based on sales. 

Demand randomly changes every day 

Task: Design a strategy for the trader to follow each day to maximize long term gain.

Example 1 : Inventory Management
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Figure 3: Illustration of the inventory management problem

In the case of the inventory control problem, the MDP was conveniently specified by a

transition function f (cf., (4)). In fact, transition functions are as powerful as transition

kernels: any MDP gives rise to some transition function f and any transition function f

gives rise to some MDP.

In some problems, not all actions are meaningful in all states. For example, ordering more

items than what one has room for in the inventory does not make much sense. However,

such meaningless actions (or forbidden actions) can always be remapped to other actions,

just like it was done above. In some cases, this is unnatural and leads to a convoluted

dynamics. Then, it might be better to introduce an additional mapping which assigns the

set of admissible actions to each state.

In some MDPs, some states are impossible to leave: If x is such a state, Xt+s = x holds

almost surely for any s � 1 provided that Xt = x, no matter what actions are selected

after time t. By convention, we will assume that no reward is incurred in such terminal

or absorbing states. An MDP with such states is called episodic. An episode then is the

(generally random) time period from the beginning of time until a terminal state is reached.

In an episodic MDP, we often consider undiscounted rewards, i.e., when � = 1.

Example 2 (Gambling): A gambler enters a game whereby she may stake any fraction At 2
[0, 1] of her current wealth Xt � 0. She wins her stake back and as much more with probability

p 2 [0, 1], while she loses her stake with probability 1 � p. Thus, the fortune of the gambler

evolves according to

Xt+1 = (1 + St+1At)Xt.

Here (St; t � 1) is a sequence of independent random variables taking values in {�1,+1}
with P (St+1 = 1) = p. The goal of the gambler is to maximize the probability that her wealth

reaches an a priori given value w
⇤
> 0. It is assumed that the initial wealth is in [0, w⇤].

This problem can be represented as an episodic MDP, where the state space is X = [0, w⇤]
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IC: Csaba Szepesv ári, Algos for RL  



We have a solar panel, mounted as shown on 
the right. 

Every X mins, we have the choice to tilt or 
rotate the panel or simply do nothing. 

Each rotation or tilting uses energy, goal is to 
maximize output for, e.g home usage. 

The sky may be covered with clouds at some 
points. We have a camera to ‘perceive’ cloud 
cover. 

Task: Design a strategy for manipulating the 
panel to maximize energy output.

Example 2 : Solar Panel Efficiency

IC: Abel et al. Improving Solar Panel Efficiency using Reinforcement Leaning 

IC: https://www.redarc.com.au 



A car travels in a one dimensional track, using a ‘weak’ engine.  

Each time step, the car can try three actions 

Move left (i.e. reverse) 

Move right (i.e. drive forward) 

Nothing, i.e. sit still 

Each move costs a penalty of -1.  

We know car position and velocity every time. Starts always at 
the bottom. 

Task: Design a strategy (sequence of actions) to get the car to 
to flag.

Example 3 : Mountain Car (Discrete Actions)

IC: https://gym.openai.com/envs/MountainCar-v0/ 



Recap

Supervised Learning Unsupervised Learning Reinforcement Learning

Data Property i.i.d i.i.d non-i.i.d, Correlated

Targets/Labels Available None Sparse, delayed

Generalization New samples New samples New experiences / 
environments

Sample Label

Prediction

model

Sample

Prediction

model

State Action

Reward

Magic

New State



RL is a paradigm for learning to make a 
good sequence of decisions. 

The algorithm (cf. agent) learns by 
interacting with its environment 

Agent learns without human 
intervention, i.e it simply maximizes 
rewards  

Reward is received only after taking an 
action, which causes a state transition. 

Reinforcement Learning — Formulation (2)

Pr(Rt = r | St = s,At = a)

Pr(St+1 = s0 | St = s,At = a)

Reward function

Dynamics (transition) function



G = �0Rt+0 + �1Rt+1+, . . . ,+�HRt+H =
1X

k=0

�kRt+k+1

Collect a sequence of rewards. Sum = return. 

Rewards maybe discounted 

‘Inflation’ type scaling of future rewards 

Value of state — expected return 

Policy — strategy for picking actions. Optimality?

Reinforcement Learning — Formulation (1)

import gym 

env = gym.make('MountainCar-v0') 
env.reset() 
policy = load_policy(‘PATH_TO_POLICY’) 

for i in range(num_episodes): 
reward_sum = 0.0  # G_i 
state = env.reset() 
while not finished: 

action = policy(state) 
new_state, reward, _,_ = env.step(action) 
reward_sum += reward  # * gamma 

print(“Total rewards: {}”.format(reward_sum))

Interaction Protocol

G = Rt+0 +Rt+1+, . . . ,+Rt+H

⇡ : S ⇥A �! [0, 1]

V ⇡(s) = E⇡[G | St = s]



Policy Evaluation — find the expected 
return of a policy 

Simple idea: Run policy many times and 
average — Monte Carlo 

Value and/or Policy Search 

Control 

Reinforcement Learning — Tasks
import gym 

env = gym.make('MountainCar-v0') 
env.reset() 
policy = load_policy(‘PATH_TO_POLICY’) 
s0 = Some state. 
v_pi_s0_samples = [] 
for i in range(num_episodes): 

state = env.reset() 
if state == s0: 

reward_sum = 0.0  # G_i 
while not finished: 
action = policy(state) 
new_state, reward, _,_ = env.step(action) 
reward_sum += reward  # * gamma 

v_pi_s0_samples.append(reward_sum) 

v_pi_s0 = average(v_pi_s0_samples)

Policy evaluation sketch for single state.



Recall  

 

 

Used to ‘search’ for policy 

Temporal difference updates 

V ⇡(s) = E⇡[G | St = s]

Q⇡(s, a) = E⇡[G | St = s,At = a]

Q Learning

Greedy policy, {s1:a2, s2:a1, s3:a1}

140 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

6.5 Q-learning: O↵-Policy TD Control

One of the early breakthroughs in reinforcement learning was the development of an
o↵-policy TD control algorithm known as Q-learning (Watkins, 1989), defined by

Q(St, At) Q(St, At) + ↵
h
Rt+1 + �max

a
Q(St+1, a)�Q(St, At)

i
. (6.8)

In this case, the learned action-value function, Q, directly approximates q⇤, the op-
timal action-value function, independent of the policy being followed. This dramat-
ically simplifies the analysis of the algorithm and enabled early convergence proofs.
The policy still has an e↵ect in that it determines which state–action pairs are visited
and updated. However, all that is required for correct convergence is that all pairs
continue to be updated. As we observed in Chapter 5, this is a minimal requirement
in the sense that any method guaranteed to find optimal behavior in the general case
must require it. Under this assumption and a variant of the usual stochastic approx-
imation conditions on the sequence of step-size parameters, Q has been shown to
converge with probability 1 to q⇤. The Q-learning algorithm is shown in procedural
form in the box below.

Q-learning: An o↵-policy TD control algorithm

Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ✏-greedy)
Take action A, observe R, S0

Q(S,A) Q(S,A) + ↵
⇥
R+ �maxa Q(S0, a)�Q(S,A)

⇤

S  S0

until S is terminal

What is the backup diagram for Q-learning? The rule (6.8) updates a state–action
pair, so the top node, the root of the backup, must be a small, filled action node.
The backup is also from action nodes, maximizing over all those actions possible in
the next state. Thus the bottom nodes of the backup diagram should be all these
action nodes. Finally, remember that we indicate taking the maximum of these
“next action” nodes with an arc across them (Figure 3.7-right). Can you guess now
what the diagram is? If so, please do make a guess before turning to the answer in
Figure 6.6.

Example 6.6: Cli↵ Walking This gridworld example compares Sarsa and Q-
learning, highlighting the di↵erence between on-policy (Sarsa) and o↵-policy (Q-
learning) methods. Consider the gridworld shown in the upper part of Figure 6.5.
This is a standard undiscounted, episodic task, with start and goal states, and the
usual actions causing movement up, down, right, and left. Reward is �1 on all
transitions except those into the region marked “The Cli↵.” Stepping into this region
incurs a reward of �100 and sends the agent instantly back to the start.

a1 a2 a3 ‘max’ a

s1 3 5.5 4 a2

s2 6.2 4 5.4 a1

s3 3.3 3.1 2.9 a1



Demo 

Q Learning on Mountain Car



The table representation is not scalable in 

Large state and action spaces 

Continuous actions, states 

Solution:  

- Use a proxy function to represent Q 

- Directly learn a mapping from states to actions 

- State aggregation (does not necessarily need DNNs) 

Q Learning — Function Approximation

Expected Return

Q function

State Action

DNN

State

Action



Where do rewards come from? 

Inverse RL — learning from experts 

How to learn relevant state aggregation, function approximation 

Relation to control 

Reinforcement Learning — Other Aspects



Books, with formal treatment 

Developer getting started tutorials 

Software  

Applications 

Gym Duckitown 

Inventory management 

 Others

References, Materials

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

https://github.com/duckietown/gym-duckietown

https://github.com/paulhendricks/gym-inventory

https://github.com/aikorea/awesome-rl


