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Data Modelling: Regression

Let say we have data D = {X , y}
We are interested in finding the function f, such that y = f (x) + e
describes the behaviour of data D with some error bars e
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Data Modelling: Regression

Possible approaches towards finding f will be:

Parametric Approach: Neural Networks family,
Non-Parametric Approach - KNN, SVMs, Gaussian Processes
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Data Modelling: Regression - Parametric Models

We have Data D = {X , y}
Parametric Approach:

Choose a function class f (x) or a mapping - With FIXED NUMBER
of parameters Θ
Learn the PARAMETERS Θ∗ of the model f (x).

Parameter Estimations

Maximum Likelihood Estimation (MLE): Find the optimal value Θ∗

Maximum A-Posterior Distribution (MAP) → learn a point
estimate (Mode of posterior distribution) of the FIXED Θ∗, using a
prior over Θ∗. Roburst to overfitting
Full Bayesian Methods: Learn plausable/feasible distribution over
parameters Θ∗. Using approximation methods: Variational Methods,
MCMC, Laplace
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Data Modelling: Graphical Intuition - Motivation:
Parametric models (Point Estimates vs Distribution)

Consider the data scatter plot below

How would you fit this model f (x)?

x

y
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Data Modelling: Graphical Intuition - Motivation: Linear
Parametric models - Parametric models (Point Estimates
vs Distribution)

Linear Model f (x) = θ1x + θ2 - fitted using MLE or MAP
Optimal parameters Θ∗ = {θ1, θ2}
NOTE: Fixed Number of Parameters (2-parameters in this example)

x

y
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Data Modelling: Graphical Intuition - Motivation: Linear
Parametric models

Linear Model f (x) = θ1x + θ2

Full Bayesian - Distribution of the parameters Θ∗,

Optimal parameters Θ∗ = θ1, θ2

NOTE: Still Fixed Number of Parameters (2-parameters in this
example)

x

y
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Data Modelling: Graphical Intuition - Motivation:
Quadratic Parametric models - MLE

Quadratic Model f (x) = θ1x
2 + θ2x + θ3 - fitted using MLE or MAP

Optimal parameters Θ∗ = {θ1, θ2, θ3} NOTE: Fixed Number of
Parameters (3-parameters in this example)

x

y
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Data Modelling: Graphical Intuition - Motivation:
Quadratic Parametric models - MAP

Quadratic Model f (x) = θ1x
2 + θ2x + θ3

Full Bayesian - Distribution of the parameters Θ∗

Optimal parameters Θ∗ = {θ1, θ2, θ3}
NOTE: Still Fixed Number of Parameters (3-parameters in this
example)

x

y
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Data Modelling: Graphical Intuition - Motivation: Cubic
Parametric models - MLE

Quadratic Model f (x) = θ1x
3 + θ2x

2 + θ3x + θ4 - fitted using MLE or
MAP

Optimal parameters Θ∗ = {θ1, θ2, θ3, θ4}
NOTE: Fixed Number of Parameters (4-parameters in this example)

x

y
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Data Modelling: Graphical Intuition - Motivation: Cubic
Parametric models - MAP

Quadratic Model f (x) = θ1x
3 + θ1x

2 + θ2x + θ3

Full Bayesian. Distribution of the parameters Θ∗

Optimal parameters Θ∗ = {θ1, θ2, θ3, θ4}
NOTE: Fixed Number of Parameters (4-parameters in this example)

x

y
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Data Modeling: PUNCH-LINE

What if we dont want to specify the number of parameters upfront in
our model?

Also what if we want to consider a distribution over plausable
functions that describe our data, such that these functions
complexity/parameters scale with the data

Also we might want our model to be able to handle missing Missing
data: aka Generative Model

How???
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Non Parametric models

What is a Non-parametric model?

No! It does NOT mean the model has no parameters

Simply means the models’s number of parameters is NOT fixed or
determined upfront like in the previous examples - parametric models

When you hear nonparametric, think models whose parameters scale
with amount/complexity of data
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Non Parametric models -GPs

So we want a model whose parameters scale with data/complexity

We also want to model plausable functions f (x) that describes our
data

Consequently, we want is a distribution over these functions

Sounds Cool!!!
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Non Parametric models -GPs

But How??
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Non Parametric models -Gaussian Processes

Lets define a vector of function values evaluated at n points for
xi ∈ X as f = (f (x1), f (x2), .., f (xn))
Lets also assume the notion of smoothness of f to mean points
(f (xi ), f (xi+1)) that are closer in space are highly correlated.

Figure: Smoothness Assumption. Source: Neil Lawrence
Charles I. Saidu 1, Michael Mayhew 2 (AUST/Baze University, Nigeria)Gaussian Processes June 5, 2019 17 / 35



Non Parametric models -Gaussian Processes

Definition: Gaussian Process:

Guassian processes GPs assume neighbouring points xi , xi+1 are
correlated and function values fi , fi+1 are distributed multivariate
gaussian

Hence, GPs are parameterized by µ(x) and covariance function or
kernel K (xi , xi+1)

p(fi , fi+1) = GP(µ,K ) (1)

µ =

[
µ(xi )
µ(xi+1)

]
,K =

[
K (xi , xi ) K (xi , xi+1)
K (xi+1, xi ) K (xi+1, xi+1)

]
(2)
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Non Parametric models - Gaussian Processes

Similarly p(f) = p(f (x1), f (x2), ....., f (xn)) is also multivariate guassian
given by

p(f) = N(µ,K ) (3)

where

µ =


µ(x1)
µ(x1)
.
.

µ(xn)

 ,K =


K (x1, x1) K (x1, x2) .. K (x1, xn)
K (x2, x1) K (x2, x2) .. K (x2, xn)
.....

K (xn, x1) K (xn, x2) .. K (xn, xn)

 (4)

Note:

function K generates the covariance matrix Σ

Σ must be positive definite functions/matrices

Note also that f could easily be infinite dimension as n tend to
infinitiny
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Brief Note on Multivariate Norm

Multivariate Normal - Statistic’s swiss army knife

X |µ,Σ ∼ MVNorm(µ,Σ)

A highly useful joint distribution for continous, vector-valued
observations

Parameterized by mean vector µ and covariance matrix Σ
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Properties Multivariate Norm

Theorem
Suppose x = (x1, x2) is jointly Gaussian with parameters

Then the marginals are also Gaussians given by
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Properties Multivariate Norm

Theorem - continues
The posterior is also gaussian given by
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Non Parametric models - Gaussian Processes

GPs HAVE parameters: they are parameterized by µ and class of
kernel function K (xi , xj) :

However, parameters scale with complexity/data

An example of a Kernel function is

K (xi , xj |Θ) = θ0exp
[
−
||xi − xj ||2

2`2

]
(5)

Hyper parameters = [θ0, `] - parameter vector

` is the lengthscale,
θ0 is known as the amplitude
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Non Parametric models - Gaussian Processes

Some kernel functions

Figure: Effect on choosing different kernels on the prior function distribution.
Source: wikipedia
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Non Parametric models - Gaussian Processes

Once we design on our kernel function
Gaussian processes can thus be used for bayesian regression:

p(f|D) =
p(D|f)p(f)

p(D)
(6)

Where p(f) represents our prior before of the functions
p(D|f is our likelihood of the Data D given the functions
p(f|D) is our posterior after observing the data D
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Non Parametric models - Recap Bayes theorem
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Non Parametric models - Where does the likelihood come
from?

All probability modeling starts with a preliminary analysis or visual
inpsection of the data

Called Exploratory Data Analysis (EDA)
Motivates choice/formulation of the likelihood

NOTE

Carrying out EDA doesnt violate spirit of prior specification unless the prior
is engineered to look exactly like whats in the data

This is why we tend to

elicit priors from third-party experts
use flat, non-informative priors
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GPs - Regression Prediction

We have training data D = {X , y}
We want to predict y∗ given points X∗
Our model is

yn = fn + en
f ∼ GP(0,K )

Then we can make predictions by combining the likelihood and
posterior theoretically as

p(y∗|X∗,D) =

∫
p(y∗|X∗, f ,D)p(f |D)df (7)
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Non-Parametric Models - Gaussian Processes -Regression
Prediction

If we assume Gaussian noise: yn = fn + en, where e ∼ N(0, σ2)

Likelihood is gaussian : IID samples

Predictive distribution has Gaussian Analytical solution as

Gaussian Process

p(y∗|X∗,D) ∼ N(f |µ∗,Σ∗) (8)

µ∗ = KT
∗ K−1

y y (9)

Σ∗ = K∗∗ − K−1
y K∗ (10)
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Non-Parametric Models - Gaussian Processes -Regression
Prediction

Gaussian Process

p(y∗|X∗,D) ∼ N(f |µ∗,Σ∗) (11)

µ∗ = KT
∗ K−1

y y (12)

Σ∗ = K∗∗ − K−1
y K∗ (13)

Where

Ky = K + σI

K - is a kernel function covariance matrix of of x1, x2, ..., xn

K∗ correlation between x1, x2, ..., xn and X∗ - the test points

K∗∗ correlation between X∗
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Non-Parametric Models - Gaussian Processes -Regression
Prediction

How do we choose hyper-parameters

Optimizations to find hyperparameters

What about NON-Gaussian Likelihood functions

For NON Gaussian Likelihood, The posterior does NOT have
analytical form. NO SUMMARISING STATISTICS. Hence, we
obtain posterior via

Sampling
Analytic approximations
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Why Gaussian Processes

What are they good for

Good for time series data

Directly captures model uncertainty

Work very well no so large datasets

Ability to be able to encode prior information of the model

handles model complexity and scalability quite well

Some limitations

Not so great for large dataset (time/space complexity). However,
parallelization, Sparse GPs and other techniques tries to solve this

May not be your number one go-to option for classification problems
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GPs: Demos GPs from Scratch Intro. Using GPy Library

Notebook on coding GPs using the equations above using python
numpy included (Just the intuition).

Practical handson using GPy Coming up!
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Additional resources

C. E., Rasmussen and C. K. I. Williams (2006) Gaussian Processes for
Machine Learning

Lecture Notes Neil Lawrence - http://inverseprobability.com

Lecture Notes Lehel Csato - http://www.cs.ubbcluj.ro/~csatol/

Lecture Notes Nando de Freitas Video -
http://www.cs.ox.ac.uk/people/nando.defreitas/

Gaussian processes website - http://www.gaussianprocess.org/
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Thank you: Questions?
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