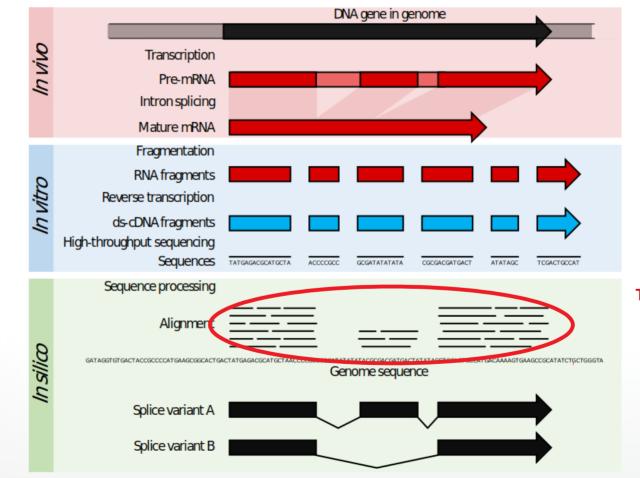
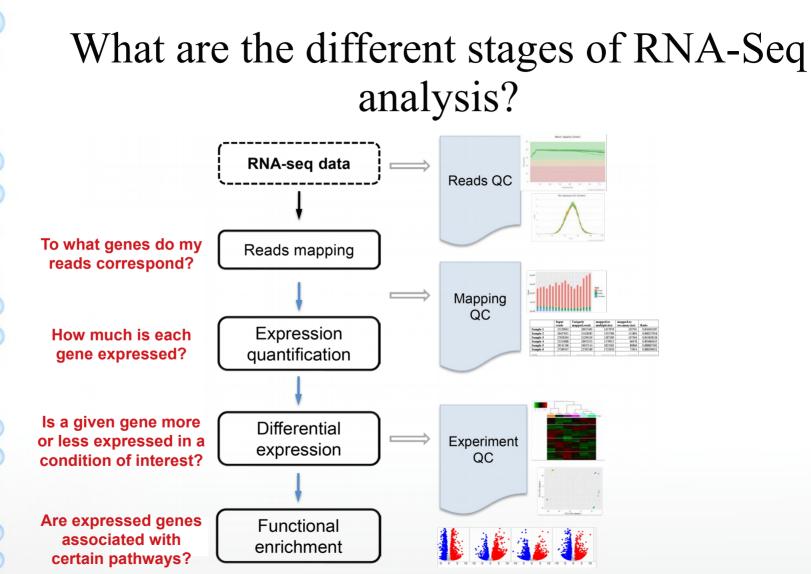
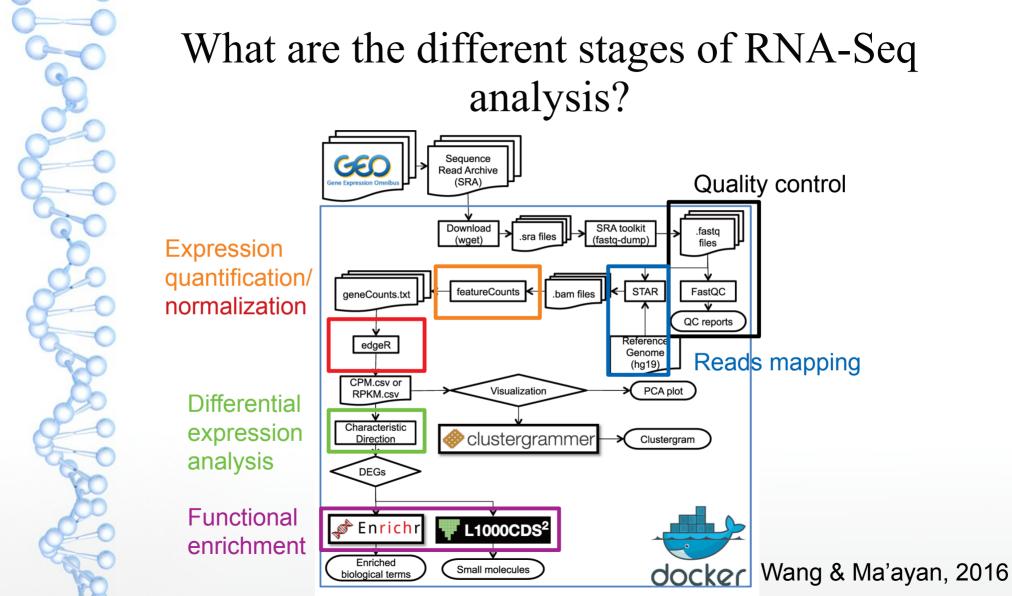

RNA-Seq Analysis of Gene Expression: A Walk-Thru and Tutorial


Helen Nigussie, Michael Mayhew, Dina Machuve June 4, 2019 Data Science Africa 2019 Addis Ababa University, Ethiopia

What is RNA-Seq analysis?

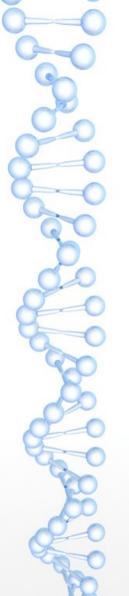

 RNA sequencing (RNA-Seq for short) is a process of assessing the *expression of genes* across a genome by *sequencing the RNA transcripts* from a collection of cells

What is RNA-Seq analysis?



These short strands that result from sequencing are called 'reads'

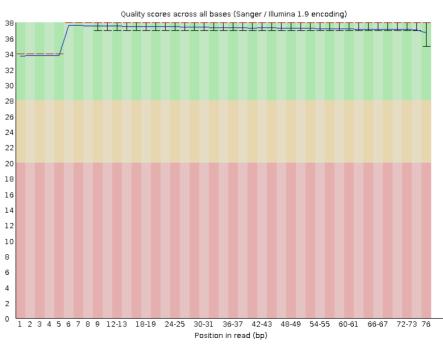
https://en.wikipedia.org/wiki/RNA-Seq



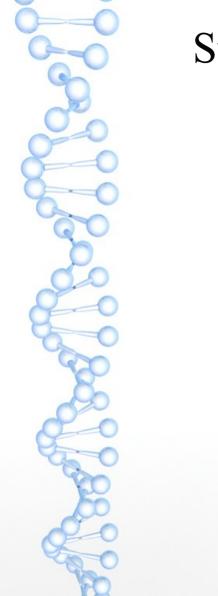
http://bioinfo.vanderbilt.edu/vangard/services-rnaseq.html

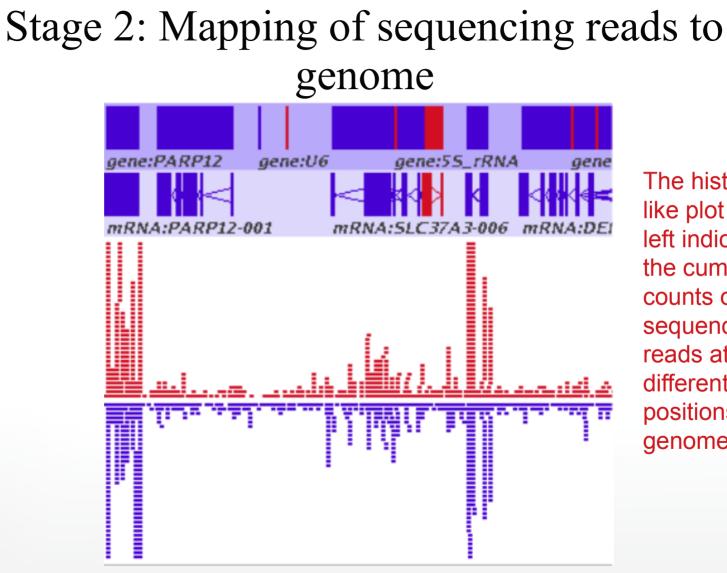
Stage 1: Processing and quality control of raw sequencing reads

- Reads are often assessed for:
 - Sequencing quality per base
 - We expect generally high quality at all bases
 - Sequencing quality per read
 - We expect high quality for longer reads
 - Sequence content (nucleotide base composition)
 - We expect a roughly uniform base composition across the read (except maybe for the initial bases; depends on how RNA prepared)
 - Per base 'N' content (or non-call)
 - Indicates potential instrument failure
 - Other measures



Stage 1: Processing and quality control of raw sequencing reads (cont'd)


FastQC Report


Summary © Basic Statistics © Per base sequence quality © Per sequence quality scores © Per base sequence content © Per base N content © Per base N content © Per base N content © Sequence Length Distribution © Sequence Duplication Levels © Overrepresented sequences © Adapter Content

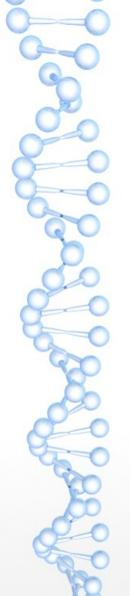
Per base sequence quality

Tue 28 May 2019 SRR3191542 1.fastq.gz **NOTE:** A 'failure' alert in the FastQC summary can be flagged simply because the data given (e.g. RNA sequencing data) isn't of the same type as that for which FastQC was originally designed (e.g. **DNA** sequencing data)

The histogramlike plot to the left indicates the cumulative counts of sequencing reads at different positions in the genome.

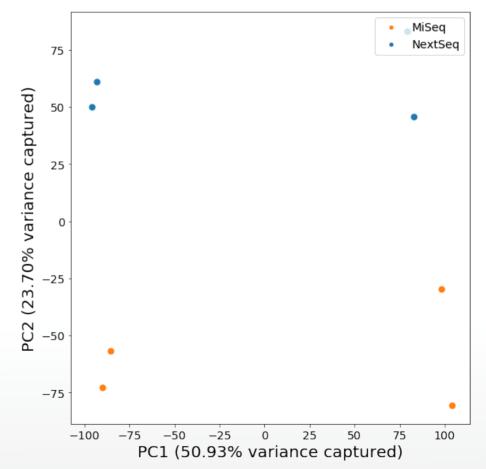
Stage 3: Assignment of reads to individual genes to attain expression measurements

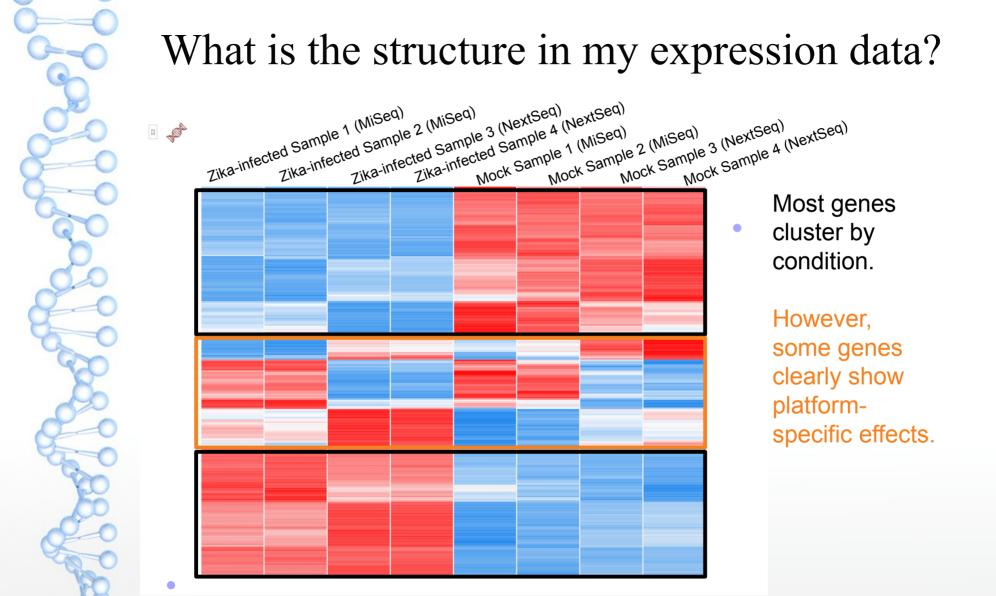
- Sequencing reads are aligned ('mapped') to a reference genome in which locations of genes are known
- Algorithms (like featureCounts) assign the aligned reads to each gene
 - Results in 'digital' measures of expression one unit of expression per mapped read
- Counts are then normalized according to sequencing depth and/or gene length
 - Two common normalized expression measures are:
 - CPM transcripts or <u>counts per million</u>


1.
$$RPK_i = \frac{R_i}{L_i}$$
 2. $S = \frac{\sum_i RPK_i}{10^6}$ **3.** $CPM_i = \frac{RPK}{S}$

RPKM – <u>r</u>eads <u>p</u>er <u>k</u>ilobase per <u>m</u>illion

1.
$$S = \frac{\sum_{i}^{i} R_{i}}{10^{6}}$$
 2. $RPM_{i} = \frac{R_{i}}{S}$ **3.** $RPKM_{i} = \frac{RPM_{i}}{L_{i}}$


NOTE:


 R_i – read counts for gene i L_i – length in kilobases of gene i

Important considerations when performing an RNA-Seq analysis

- Should I consider all genes in my analysis? What about those with low or no expression across all conditions/platforms?
- Are the expression differences I'm seeing solely due to the condition? Or some other factor?

What genes show different expression patterns in my conditions of interest?

	MiSeq	NextSeq 500	Combined			
WASH7P	-0.000268	-0.000969	-0.000385			
LOC729737	-0.000134	-0.000529	-0.000198			
LOC100133331	-0.000755	-0.000849	-0.000701			
MIR6723	-0.001514	-0.000954	-0.001068			
LOC100288069	-0.000337	-0.000720	-0.000428			

Are differentially expressed genes enriched for any biological processes or pharmacological targets?

	KEGG 2016 Bar Graph Tab	le Grid	Network	Clustergram	٥	MGI Mammalian Phenotype Level 4					
)	Click the bars to sort. Now sorted by combined score.			SVG	PNG JPG	Bar Graph Click the bars to sort. Now sorted by combined score.	Table	Grid	Network	Clustergram	¢
	Proteoglycans in cancer_Homo sapiens_hsa05205					MP0002080_prenatal_lethality_					
	DNA replication_Homo sapiens_hsa03030					MP0003861_abnormal_nervous_system_					
	Cell cycle_Homo sapiens_hsa04110					MP0002152_abnormal_brain_morphology_					
0	Apoptosis_Homo sapiens_hsa04210					MP0001697_abnormal_embryo_size_					
0	Pathogenic Escherichia coli infection_Homo sapiens_hsa0513)				MP0003984_embryonic_growth_retardation_					
O	Focal adhesion_Homo sapiens_hsa04510					MP0002088_abnormal_embryonic_growth/wei_					
2	Salmonella infection_Homo sapiens_hsa05132					MP0002081_perinatal_lethality_					
	Estrogen signaling pathway_Homo sapiens_hsa04915					MP0001672_abnormal_embryogenesis/_devel_					
	Hippo signaling pathway_Homo sapiens_hsa04390					MP0005380_embryogenesis_phenotype_					
	HTLV-1 infection_Homo sapiens_hsa05166					MP0002882_abnormal_neuron_morphology_					

Genes with *low* expression in Zikainfected samples are enriched for cellcycle and DNA replication processes. Genes with *high* expression in Zikainfected samples are enriched for prenatal lethality phenotypes in mice.

An unsolicited advertisement

Kumasi, Ghana November 11-15, 2019

Mark your calendars!

Oral Presentation Submission Deadline: September 13, 2019 Poster Presentation Submission Deadline: October 15, 2019

https://www.iscb.org/iscbafrica2019

Additional resources

- Galaxy Community Hub's RNA-Seq Introduction: https://galaxyproject.org/tutorials/rb_rnaseq/
- FastQC Tutorial & FAQ: <u>https://rtsf.natsci.msu.edu/genomics/tech-notes/fastqc-tutorial-and-faq/</u>
- Description of normalized RNA-Seq expression measures: <u>https://statquest.org/2015/07/09/rpkm-fpkm-and-tpm-clearly-explained/</u>

Thanks for your attention and see you at the workshop!

Any questions?