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Introduction to Machine learning

• Artificial Intelligence (AI) is the study and 
design of Intelligent agents. 

• An Intelligent agent can perceive its 
environment through sensors and it can 
act on its environment through actuators.

• E.g. Agent: Humanoid robot
• Environment: Earth?
• Sensors: Camera, tactile sensor etc.
• Actuators: Motors, grippers etc. 
• Machine learning is a subfield of Artificial 

Intelligence

Branches of AI



Introduction to Machine learning

• Machine learning techniques learn 
from data without being explicitly 
programmed to do so. 
• Machine learning models enable the 

agent to learn from its own 
experience by extracting useful 
information from feedback from its 
environment.
• Three types of learning feedback:
• Supervised learning
• Unsupervised learning 
• Reinforcement learning

Branches of Machine learning



Supervised learning
• Supervised learning: the machine 

learning model is trained on many 
labelled examples of input-output 
pairs. 
• Such that when presented with a 

novel input, the model can estimate 
accurately what the correct output 
should be.
• Data(x, y): x is input data, y is label
• Goal: learn a function to map x -> y
• Examples include; Classification, 

regression object detection, image 
captioning etc. 

Supervised learning task in the form of classification



Unsupervised learning

• Unsupervised learning: here the model 
extract useful information from 
unlabeled and unstructured data. 
• Data: x (raw data)
• Goal: learn an underlining structure in 

the data that is not explicitly defined 
• Examples include; Clustering, density 

estimation, dimensionality reduction, 
etc. 



Reinforcement learning

• Reinforcement learning involves 
problems where an agent
interacts with an environment
that provides numeric reward 
signals
• Goal: learn how to take actions

in a given state, in order to 
maximize the reward. 



Reinforcement Learning

• Learning by interacting with an environment 
• Trial-and-error learning: the agent takes actions and gets feedback 

through a numeral reward/penalty)

Action 1: try taking 
hot bread from 
oven without
gloves

Action 2: take hot 
bread from oven 
with gloves

Reward: +100
Reward: -100



Supervised Learning versus 
Reinforcement Learning
Supervised Learning Reinforcement Learning
Learns a function, f: X → Y that 
maps X (input) to Y (e.g. class label)

Learns a policy function π: S → A that 
maps from states to actions

We have labelled training data that 
indicates the correct Y for given X

We don’t have “labelled” training data 
that indicates the correct action to take 
for a given state

Agent learns directly from labelled data Agent learns indirectly from time-
delayed rewards collected through 
experience (trial-and-error)



Reinforcement learning definitions

• Agent: An agent takes actions; for example, a drone making a delivery, or Super Mario navigating 
a video game. The algorithm is run by the agent. In life, the agent is you.

• Actions (A): A is the set of all possible moves the agent can make. An action is almost self-
explanatory, but it should be noted that agents choose among a list of possible actions. 

• Environment: The world through which the agent moves. The environment takes the agent’s 
current state and action as input, and returns as output the agent’s reward and next state. 

• State (S): A state is a concrete and immediate situation in which the agent finds itself; i.e. a 
specific place and moment, an instantaneous configuration that puts the agent in relation to 
other significant things such as tools, obstacles, enemies or prizes.

• Reward (R): A reward is the feedback by which we measure the success or failure of an agent’s 
actions.

Let’s define the key terms in reinforcement learning.



Reinforcement learning definitions contd....

• Discount factor: The discount factor is multiplied with future rewards as discovered by the agent 
in order to dampen their effect on the agent’s choice of action. It makes future rewards worth 
less than immediate rewards; i.e. it enforces a kind of greediness on the agent. Often expressed 
with the lower-case Greek letter gamma: γ.

• Policy (π): The policy is the strategy that the agent employs to determine the next action based 
on the current state. It maps states to actions, the actions that promise the highest reward.

• Value (V): The expected long-term return with discount, as opposed to the short-term reward R. 
Vπ(s) is defined as the expected long-term return of the current state under policy π. We discount 
rewards, or lower their estimated value, the further into the future they occur. 

• Q-value or action-value (Q): Q-value is similar to Value, except that it takes an extra parameter, 
the current action a. Qπ(s, a) refers to the long-term return of the current state s, taking action a 
under policy π. Q maps state-action pairs to rewards. Note the difference between Q and policy.

• Trajectory: A sequence of states and actions that influence those states. From the Latin “to throw 
across.”



Toy Example
• 9 possible states: {S0, S1, …, S8}
• 5 possible actions in each state:

{up, right, down, left, stay}
• Rewards:
• Attaining the goal state has a reward of +50
• Trying to walk into a wall has a penalty (negative 

reward) of -5
• All other actions have a reward of 0

• By trial-and-error, the agent needs to learn an 
optimal policy, i.e. what the best action is to take 
in each state

S0 S1 S2

S3 S4 S5

S6 S7 S8



Toy Example – Examples of Effects of Actions
• Results of actions from S2:
• up: Reward = -5, Ends up still in S2
• right: Reward = -5, Ends up still in S2
• down: Reward = 0, Ends up in S5
• left: Reward = 0, Ends up S1
• stay: Reward = 0, Ends up still in S2

• Results of actions from S6:
• up: Reward = 0, Ends up still in S3
• right: Reward = +50, Ends up in S7
• down: Reward = -5, Ends up still in S6
• left: Reward = -5, Ends up still in S6
• stay: Reward = 0, Ends up still in S6

S0 S1 S2

S3 S4 S5

S6 S7 S8



Reinforcement Learning Examples

• Pancake flipping robot (2010)

https://www.youtube.com/watch?v=W_gxLKSsSIE


Reinforcement Learning Examples

Cart-pole problem • Objective: Balance a pole on top of a 
movable cart
• State: angle, angular speed, position, 

horizontal velocity
• Action: Horizontal force applied on 

cart 
• Reward: 1 at each time step if the pole 

is upright



Reinforcement Learning Examples

Atari games • Objective: Complete the game with 
the highest score
• State: Raw pixel inputs of the game 

state
• Action: Game controls e.g. up, left, 

right , down.
• Reward: Score increase or decrease at 

each time step 



Reinforcement Learning Examples

Go (Board game) • Objective: Win the game!
• State: Position of all the pieces
• Action: Where to put the next piece 

down
• Reward: 1 if win at the end of the 

game, 0 otherwise



Markov Decision Process

• The Markov state provides a means of formulating the reinforcement learning process 
mathematically

• Markov property: The current state completely encapsulates the state of the world
Defined by (S, A, ℛ,ℙ, γ )
S : set of possible states
A : set of possible actions
ℛ: distribution of reward given (state, action) pair
ℙ: transition probability i.e. distribution over next state given
γ: discount factor



Markov Decision Process

• At time step t = 0, environment samples initial state  !" ~ $(!")
• Then, for t = 0 until done:
- Agent selects action &'
- Environment samples reward (' ~ R(.| !', &')
- Environment samples next state !'*+ ~ P(.|!', &')
- Agent receives reward (' and next state !'*+

• A policy , is a function from S to A that specified what action to take in each state
• Objective: find the optimal policy ,∗ that maximizes cumulative discounted reward:∑'/" γ'('



The optimal policy

• We want to find the optimal policy !∗ that maximizes the sum of 
rewards.
• How do we handle the randomness (initial state, transition 

probability...)? 
• Maximize the expected sum of rewards!

• Formally:  #∗ = arg()* + [ ∑./0 γ.2.] with
40 ~ 6(40),      ). ~ #(.| 4.),      4.89 ~ P(.|4., ).)



Value function and Q-value function

Following a policy produces sample trajectories (or paths) !", #", $", !%, #%, $%, .....
How good is a state?
The value function at state s, is the expected cumulative reward from following the 
policy from state s:

&'(!) = + [-
./"

γ.$. |!" = !, 3]

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward 
from taking action a in state s and then following the policy:

5'(!, #) = + [-
./"

γ.$. |!" = !, #" = #, 3]



Q-Table

• A table of Q-values for each state-action pair
• Q-value estimates the expected long-term reward for taking a given 

action from a given state

Action 1 Action 2 Action 3
State 1 Q(s1,a1) Q(s1,a2) Q(s1,a3)
State 2 Q(s2,a1) Q(s2,a2) Q(s2,a3)
State 3 Q(s3,a1) Q(s3,a2) Q(s3,a3)
State 4 Q(s4,a1) Q(s4,a2) Q(s4,a3)
State 5 Q(s5,a1) Q(s5,a2) Q(s5,a3)
State 6 Q(s6,a1) Q(s6,a2) Q(s6,a3)
State 7 Q(s7,a1) Q(s7,a2) Q(s7,a3)



Bellman Equation for updating the Q-values

• ! ", $ ← ! ", $ + ' ( + )*+,
-

! "., - − !(", $)

Equivalent	to:
• ! ", $ ← (? − ')! ", $ + ' ( + )*+,

-
! "., -

@ = Learning rate – how much do we update the q-value in each iteration? (0 < @ ≤ 1)

E = Discount factor – how important are future rewards? (0 ≤ E ≤ 1)S – Current state
A – Chosen action

R – Reward from taking action A in state S

S’ – New state resulting from taking action A in state S



Q-learning

We can use the bellman equation as an iterative means of determining the optimal 
policy. Such a value iteration algorithm is referred to as Q-learning and will be of 
the form;

Where ! is the learning rate (0 < ! ≤1)
The Q-learning algorithm is also referred to as temporal difference learning. 



Q-learning - Algorithm



Q-Learning Algorithm

• Initialize:	 Q(s,	a),	for	all	s ∈	S,	a ∈	A(s),	arbitrarily,	and	
Q(terminal-state,	·)	=	0

• Repeat	(for	each	episode):	
• Initialize	starting	state	S
• Repeat	(for	each	step	of	episode):	

• Choose	action	A to	take	from	S	using	a	policy	derived	from	Q
• Take	action	A,	observe	reward	R,	and	new	state	IJ

• Update Q-value: K L, M ← K L, M + P Q + RSTU
V

K LJ, V − K(L, M)

• Update	current	state:	S	←	S′	
• until	S is	terminal	

Sometimes the agent explores - tries random actions
Sometimes the agent exploits – chooses the best action based on its prior experience



Building a simple Q-learning agent
(Coding session)

Source Code: https://github.com/chikayinkabanjo/Reforcement-Learning
Development Environment: https://colab.research.google.com/

https://colab.research.google.com/


Recap

• Reinforcement learning as a branch of machine learning, involves an agent-
environment relationship where the agent chooses actions that maximize a 
reward within that environment
• A policy is the strategy the agent employs to determine the next action given its 

current state. The goal is to optimize the policy that returns the maximum 
cumulative future reward.
• The Q-value function is a key function for estimate the maximum expected 

reward given a state-action pair
• The Q-value function optimizes  and updates the agents policy
• The Q-learning algorithm is an iterative algorithm for estimating the Q-value for 

state-action pairs.



Where to go from here?

• Function approximators: The Q-learning algorithm is computationally 
infeasible for very high dimensional state-action spaces. We need a 
function approximator such as a deep neural network, to estimate 
!∗(s, a).
• This will introduce the subject of Deep Reinforcement Learning using 

deep learning techniques.



Further Reading

• Reinforcement Learning:  An introduction by Sutton and Barto
• Deep Reinforcement Learning: An overview by Yuxi Li
• Jens Kober, J. Andrew Bagnell and Jan Peters, “Reinforcement learning in 

robotics: A survey”, International Journal of Robotics Research, 32(11) 
1238–1274
• Florentin Woergoetter and Bernd Porr (2008), Scholarpedia, 3(3):1448 
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• Satwik Kansal and Brendan Martin, “Reinforcement Q-Learning from 

Scratch in Python with OpenAI Gym”, 
https://www.learndatasci.com/tutorials/reinforcement-q-learning-scratch-
python-openai-gym/

http://www.scholarpedia.org/article/Reinforcement_learning
https://www.learndatasci.com/tutorials/reinforcement-q-learning-scratch-python-openai-gym/
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