Deep Learning Intro

Max Welling

Special thanks to Efstratios Gavves TR)
whose slides | am using and who has helped with the practlcals

Also thanks to Cees Snoek, Laurens van der Maaten & Arnold
Smeulders who all contributed to the slides

UNIVERSITY OF AMSTERDAM QUQ |CONVV\
X

Deep
Learning in
Computer
Vision

UVA DEEP LEARNING COURSE

EFSTRATIOS GAVVES

INTRODUCTION TO DEEP LEARNING AND NEURAL
NETWORKS - 2

ComPuter \/LsLon f;\\r | 3D \A/oR‘:J

2D Iaﬂac\q}@. / \

' s 2 \
CaAMero

Object and activity recognition

Click to go to the video
in Youtube

anyoning: 0.187

ase jumping: 0.115 °

Large-scale Video Classification with Convolutional Neural Networks, CVPR
2014

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES

INTRODUCTION TO DEEP LEARNING AND NEURAL NETWORKS - 3

https://www.youtube.com/watch?v=qrzQ_AB1DZk
https://www.youtube.com/watch?v=qrzQ_AB1DZk

Object detection, segmentation, pose estimation

Click to go to the video
in Youtube

Microsoft Deep Learning Semantic Image Segmentation

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES

INTRODUCTION TO DEEP LEARNING AND NEURAL NETWORKS - 4

https://www.youtube.com/watch?v=OAWCp7OXLnY
https://www.youtube.com/watch?v=OAWCp7OXLnY

Self-driving cars

Click. to go to the video

in Youtube

Self Driving Cars HD

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES

INTRODUCTION TO DEEP LEARNING AND NEURAL NETWORKS - 6

https://www.youtube.com/watch?v=-96BEoXJMs0
https://www.youtube.com/watch?v=-96BEoXJMs0

Drones and robots

Click to go to the video
in Youtube

—

"
l-
g

10x real time : , iteration 3

Deep Sensorimotor Learning

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES

INTRODUCTION TO DEEP LEARNING AND NEURAL NETWORKS - 7

https://www.youtube.com/watch?v=2hGngG64dNM
https://www.youtube.com/watch?v=2hGngG64dNM
https://www.youtube.com/watch?v=2hGngG64dNM

Deep
Learning in
NLP and

Speech

UVA DEEP LEARNING COURSE

EFSTRATIOS GAVVES

INTRODUCTION TO DEEP LEARNING AND NEURAL
NETWORKS - 8

I n -{ !ti .’:: 8 >
a a S Stmdard" f B2 |
— especially WO[’dS‘ E-= 5 "_".7‘f"

- valuvik = =3 s 3 5m_or
] '—."r(o gy ognan F
Py p)gm J witee UE’ Ik x‘ lmformau(m cg ys ems M'DPUt :':.;..;.
translation it & By 3 B FUIES S5} Tomuny » 2207 2 Do
taSkS qelee= Eeé. co problem eval I@ ﬁ-g QSk
£ 1200 nltaoncu o C";;:E’o = @ o £
R ke rﬁlu"l -c G"{g&;‘ = : L "i‘E l BAEIES o O.OQE 811‘
194 .i(rt"rml g Q’chlan;--g &E 8 & earnlngﬁ :als%m
8 Fench € £ 3 gdeterming = Eaded "0 g AL tm =
:§: :_-:; 22 ’:?Z.% %; g turglgr_esfep‘r[phmm uaal
: 5 “'ggﬁ,mOdEISﬁ?":'“ V’“-?-’ﬁ;'gi hemi.‘

Speech recognition and Machine translation

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES
INTRODUCTION TO DEEP LEARNING AND NEURAL NETWORKS -9

Deep
Learning in
the arts

UVA DEEP LEARNING COURSE

EFSTRATIOS GAVVES

INTRODUCTION TO DEEP LEARNING AND NEURAL
NETWORKS - 10

Gatys et al

Imitating famous painters

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES
INTRODUCTION TO DEEP LEARNING AND NEURAL NETWORKS - 11

Handwriting

=PRSS o g hm@!m‘n@
l; Hotherlogard readers | uf of fiu \owdions of o pen- ip og P“”N@ Wi,

Thiserttre post wag hand wmiHon by a newied ekt
Iy how e Aot Rorng vl (reates o{iﬂl-fwt 5\\/&5
{}l 00&0\34[01\/ wr;-)-e_g]oeH'or A hom :é,.w. :

B from Vof owviples.
Click to go to the * et ey
®£ COs $& 4 & neural Viebwarh dossn + o«)w“j website

Prd the original devt was byped: by we 4 huiman o jwwe ﬁ%dwf({/{em e 24% WFJM oot

- : heae ! : \
ke 1w oM , .
So whafid G a4 we:ﬂ.e, 1+S oW N S\{k/,QI ow: Whtiai(a”oww »

A neacol Neark is d program That can leasn Fo -poucw a Sef OQ il s i ckes ofe dhe game

\ ' . i ,(Toronte
But & can b odo W done 1 weeds tobe draned, Graie o the [Aviverstty of \orow

4 the. wark 01(Alex

T\”‘L el nlwor e e Hrined g o orpus o wiihng SWI)L?S‘ Qv\(k jou Can '\‘V’ \{ {j{)l

————————————————————————

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES

INTRODUCTION TO DEEP LEARNING AND NEURAL NETWORKS - 12

http://www.cs.toronto.edu/~graves/handwriting.html
http://www.cs.toronto.edu/~graves/handwriting.html

Deep
Learning: The

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

What and S
Why

UVA DEEP LEARNING COURSE

EFSTRATIOS GAVVES

INTRODUCTION TO DEEP LEARNING AND NEURAL
NETWORKS - 13

A Neural Network perspective

Loss

oo

5 convolutional layers Softmax Cross entropy
2 fully connected layers

Sigmoid Euclidean

100 convolutional layers
50 batch normalization layers Linear etc. Contrastive

The Feedforward NN

(2) ~ 52

INPUT HIDDEN OUTPUT
LAYER LAYER LAYER

attl = Zn’f b0

Qin i7%5n

Module/Layer types?

Linear: x;,1 = W - x; [parameteric = learnable]
Convolutional: x;,.1 = W * x; [parameteric = learnable]
Nonlinearity: x;,1 = h(xy) [non-parameteric = defined]
Pooling: x; = downsample (x,) [non-parameteric = defined]
Normalization, e.qg.: x; = £,(xo) [non-parameteric = defined]

Regularization, e.g.: x; = dropout(x,) [non-parameteric =
defined]

Practically, any 15t order [almost everywhere] differentiable
function can be a module

Nonlinearities

If we would only have N linear layers, we could replace
them all with a single layer

W1°W2'...-WN=W

Nonlinearities allow for deeper networks

Any nonlinear function can work although some are more
preferable than others

Sigmoid

10

sigmoid

\

0.8 |-

0.6 |

04}

0.2

—

— a=alx)

— da/dx

derivative

x?ut

x5

Tanh

et —e
h(z) =
et +e "t
10 T 3 /‘\ S :.f,unh':.l‘::‘
/ -
05 | ﬂ
00 [i s— \-g d
-0.5
-1.0

RelLU

Activation function a = h(x) = max(0, x)
J Very popular in computer vision and speech recognition

0,if x<0
1,ifx >0

Gradient wrt the |nput ax {

t
i
1
I
I
I
|
1
1
Yi = 03T |
I

‘ - o
W = B4iT5i

i
|
Rel.U Leaky ReLU/PReLU Randomized Leaky ReLU

RelLU

Much faster computations, gradients
[No vanishing/exploding gradients
1 People claim biological plausibility :/
Sparse activations
No saturation
Non-symmetric
Non-differentiable at 0

A large gradient during training can cause a neuron to “die”.
Higher learning rates mitigate the problem

Softmax

ex(k)

5, e

Q Outputs probability distribution, ¥X_, a®) = 1 for K classes
A Typically used as prediction layer

Because e%t? = e%e? we usually compute

Activation function a®) = softmax(x®)) =

(k) _ ek (k)
al®) = —, L = maxy x*) because
21 ex(])—u
o) ot x(0) 2K

N—p XD T 5 X0
Z]-ex K eﬂzje Zje

Avoid exponentianting large numbers = better stability

Euclidean Loss

Activation function a(x) = 0.5 ||y — x||?
J Mostly used to measure the loss in regression tasks

Gradient with respect to the input g—z =xX—-Y

25 -

20 |-

15 |

10 f s

Cross-entropy loss

Activation function a(x) = — X.X_ 1y(") logx®), y®=1(0,1}

1

ax(k) x (k)
The cross-entropy is the most popular classification loss
for classifiers that output probabilities (not SVM)

Cross-entropy loss couples well softmax/sigmoid module

 Often the modules are combined and joint gradients are
computed

Generalization of logistic regression for more than 2
outputs

Gradient with respect to the input

Training Neural Networks

1. The Neural Network
aL(X; 61,...,L) - hl, (hl,—'] (h"l (X, 61); eL—l)' eL)

2. Learning by minimizing empirical error

0" « argming z L(y, aL(x; 01,1))
(x,¥)S(X,Y)

3. Optimizing with Gradient Descend based methods
o+ = g) —p VL

Intuitive
Backpropaga
tion

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES

MODULAR LEARNING - PAGE 26

SGD

Sample small mini-batch of data-cases uniformly at random.
Compute average gradient based on this mini-batch.
Perform update based on gradient.

Repeat until convergence { _—
F:““ //'/ /// /I
a - - \\ /,~~‘ o
0; — 6; — QEJ (6) Stochastic Gradient Vi 3 //

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 27

Backpropagation in practice

o Things are dead simple, just compute per module

da(x; 0) da(x; 6)
0x 00

o Then follow iterative procedure

oL _(aam)T | (oL o (BL)T

da; \0x41) daysy 96, 96, \dq,

UVA DEEP LEARNING COURSE —
EFSTRATIOS GAVVES

MODULAR LEARNING - PAGE 77

Backpropagation in practice

© Things are dead simple, just compute per module
da(xf)

0x
4\ da(x;0)

a6

o Then follow iterative procedure [remember: a; = X;44]

Derivatives from
layer oV

T LT
a_/:_(%) 0L | oL day (0L
day daj.1| |06, 06, \dq

ale‘\\\\\\\\\J//

Module

UVA DEEP LEARNING COURSE —
EFSTRATIOS GAVVES

MODULAR LEARNING - PAGE 78

Backpropagation visualization

UVA DEEP LEARNING COURSE —
EFSTRATIOS GAVVES

MODULAR LEARNING - PAGE 82

Backpropagation visualization at epoch (t)

Forward propagations

COMPL{te and store a1= h.l(xl)

UVA DEEP LEARNING COURSE —
EFSTRATIOS GAVVES

MODULAR LEARNING - PAGE 83

Backpropagation visualization at epoch (t)

Forwarg propagations

Compute and store A= hy(x;)

UVA DEEP LEARNING COURSE —
EFSTRATIOS GAVVES

MODULAR LEARNING - PAGE 84

Backpropagation visualization at epoch (t)

Forward propagations

Compute and store az= hz(x3)

UVA DEEP LEARNING COURSE —
EFSTRATIOS GAVVES

MODULAR LEARNING - PAGE 85

Backpropagation visualization at epoch (t)

Backpr'opaﬁaﬁon Exam
JL | | @le L(y,x3) = hy(x3) = 05 [ly - x|
7 = .. € Direct computation oL
dag —=—(y—x3)
ay = hy(xy,6,) o 0 o 0x3

2

UVA DEEP LEARNING COURSE —
EFSTRATIOS GAVVES

MODULAR LEARNING - PAGE 86

Backpropagation visualization at epoch (t)

Exam

Backpropaﬁaﬁon Eﬁ}’. x3) =05y - x3||2

oL L da 3 = hs(x;) 0 X3 = 0,

_-- - a = 0(0,%,)

5a2 3a3 (3a2 0[6£

L L e, 0 = hz(xz,é)z) 0 =0

a0, da, 00,) = do(x) = a(x)(1-0a(x))

_ da
o =G 6)(f) 2 xaa(By1)(1 - (6y1)

a0, @1

Stored alur'ina eorw%

compu’raﬁoncs /

Stor
N

SR AR N NSO MODULAR LEARNING - PAGE 87

EFSTRATIOS GAVVES

Backpropagation visualization at epoch (t)

Exam
Backpr'opaﬁaﬁon Elé}’. az) =05y - ‘13"2
L AL da, G = a(0x,)
-, X =@
6a1 3a2 aal 4 = O'(BIXI)
L 0L day da, da,
= — —=—=00,(1-a
08, da; 06, o, oy, ellm @)
day
6_91 =x10¢(1 - ay)

()
0_91 = 6_alx1a1(1 -)

Computed From the ex
previous backpropaaaﬁon 9+eP
(Remember, recursive rule)

UVA DEEP LEARNING COURSE —
EFSTRATIOS GAVVES

MODULAR LEARNING - PAGE 88

Adam [Ba & Kingma 2014]

& One of the most popular learning algorithms
g = VoL
= fime-g + (1= 1) gy
Vt > /32‘71: 1 t (1 ﬂz)gt

> Recommended values: B; = 0.9, B, = 0.999,¢ = 107

o Similar to RMSprop, but with momentum & correction bias

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 37

Visual overview

\\\\ \\\::s\'\ e P
Y- SGD W - SGD
| — Momentum | — Momentum
- = NAG , —— NAG
= | — Adagrad | — Adagrad
. Adadelta i -~ Adadelta
2
s . -
2 1
o]
21
it
1.0
nu \:\\ /’/ 05
-05-;0\\\ o~ 0.0
At T gl X
Picture credit:
Alec Radford

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 38

https://twitter.com/alecrad

Convolutional Neural Networks

Or just Convnets/CNNs

| M ”ﬁ E(\S L
i N P oy SRRER V) I I 1. I vl g 1 1 \
| — AT N AN AN
"'\ = - ’ 192 192 - Rag. ~.\<". 7648\ /2048 ‘~..:ien<e
27 12 S o 0 \ | N A >'-,. — \
G B & ATy A BRE \ 13 \ /
-. .. ; p .\ e ol [; Sy f" I :
i N el [= 3| \ 15 1 \\ 13 idense’| [dense
. 2 '-> ,'.' “‘ ! L ,'~«
\]— 3|. e \ A Y ’ 1600¢
\ 193 192 123 Max - ||
Max 128 Max pooling 2%1E 2048
| pooling pooling

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
al the bottom. The GPUs communicate only at certain layers. The network™s input is 150,528-dimensional, and
the number ol neurons in the network’s remainming layers is given by 253.440-186,624-64,896-64 .896-43,264-
40964096~ 1K},

Convnets vs NNs

Question: Spatial structure?
d NNs: not modelled
 Convnets: Convolutional filters
Question: Huge input dimensionalities?
[NNs: scale badly in nr parameters and compute efficiency
1 Convnets: Parameter sharing
Question: Local invariances?
[NNSs: not hardwired into model
[Convnets: Pooling
Question: Translation equivariance?

@ NN: not hardwired
A Convnets: translation equivariant

Lanas

: 3&
b
vl
%]
=
T
1
&
o
Y
d4iz

BT E PRRT s | S B R

Spatial Information?

One pixel alone does not carry much information

Many pixels in the right order though — tons of information
|.e., Neighboring variables are correlated

And the variable correlations is the
visual structure we want to learn

Parameter Sharing

Natural images are stationary

Visual features are common for
different parts of one or multiple image

If features are local and similar across
locations, why not reuse filters?

Local parameter sharing — Convolutions

Convolutional filters

Original image

Convolutional filters

Original image

OO0 ||
-

Convolutional
filter 1

1

0

1

0

1

0

1

0

1

Original image

Convolutional filters

Convolving the image Result

1

x1

1

X

0

x0

1

x1

]ll

olojo|o |«
o

Convolutional

filter 1

1

0

1

0

1

0

1

0

1

Inner product
N

I(x,y)*h=z qu—ly ~)+ k(i)

i=—a j=-=b

Convolutional filters

Original image Convolving the image Result

- 1xO 1x1 1XO-

olojo o=
o

o I

.l

filter 1

4 0x1 1xO

1

0

1

0

1

0

1

0

1

Inner product
N

I(x,y)*h=z qu-zy D h(i.))

i=—a j=-=b

Original image

Convolutional filters

11,140
Oi111/110
000/[1)1
I5fo] 1] 4o
1011100 -.
Convolutional --
filter 1
.
0/1]0
101

Convolving the image Result

x1 x

X

1xO 1x1

0xO

1

x1

0%3

0

x1

Inner product
AL

z(x,y)*h=z Z/(x—zy D h(i.))

i=—a j=-=b

Why call them convolutions?

Definition The convolution of two functions [and g is denoted by *
as the integral of the product of the two functions after one is
reversed and shifted

(f * g)(0) & f F)g(t 1) dr = f F(t—Dg(D) dr

Convolution Cross-conelation Autocomrelation
RN] 5 I\
9N N N

Pkg A g 9*9
AERAI=ZEN=1RR NN NN NARRRINN
Al AR NIRRT

! : ' : : |

Definition The convolution of two functions f and g is denoted by *
as the integral of the product of the two functions after one is
reversed and shifted

(f * g)(0) & f F(D)g(t — 1) dr =] F(t—Dg(D) dr

Convolution Cross-conelation Autocormrelation

A [R [ERRRELEN AN

fkg f fxg 99 /|
| [t e] B

Definition The convolution of two functions f and g is denoted by *
as the integral of the product of the two functions after one is
reversed and shifted

(f * g)(0) & f F(D)g(t — 1) dr = j F(t—Dg(D) dr

Convolution Cross-conelation Autocormrelation

kg !I!
S ™ | | [14 N » |

Inverted. In practice we can do | N\ |
cross-correlations, not convolutions \

Filters have width/height/depth

Grayscale Multiple channels

p N/‘

F—'lH'er'

How many parameters per filter? #params = H X W X D

Parameter Sharing

0

N

)
N

g

2/
a7
.
|
1/

Z’Ezya Z LZ”C]?:a’ly JyaCk AJ’U&.]'_UJ‘*

]’Ua]yﬂ
Assume the image is 30%30x3. Depth of 5
| column of Fiters common across the x 7% 7 * 3 parameters per filter
mage. : 735 parameters in total

How many parameters in total?

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES
DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 52

Local connectivity

The weight connections are surface-wise local! . /
[Local connectivity

The weights connections are depth-wise global / ‘ I'

For standard neurons no local connectivity
J Everything is connected to everything

#

RN

Depthwise Convolution

1x1 conv.

16

General convolution depthwise separable convolution

, — - . - . . .
A'i:riya ’— Z ‘/sz—]xﬂ'y—]yﬁk A]x,,]y;k —
]xa]y,

Z KCk Z WZ.’IZ —Jaly—Jy,k Aj:cajy:k
]x»]y

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES
DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 54

Pooling

Often we want to summarize the local
information into a single code vector

Feature aggregation = Pooling
J Pooled feature invariant to small local

transformations. Only the strongest
activation is retained
HlA 3 s
7~
21 o 9

 Output dimensions - Faster
computations

1 Keeps most salient information

 Different dimensionality inputs can
now be compared

Implementation details

Stride

1 every how many pixels do you compute a convolution
1 equivalent to sampling coefficient, influences output size

Padding

1 Add Os (or another value) around the layer input

A Prevent output from getting smaller and smaller D

Dilation
d Atrous convolutions

Batch normalization [loffe2015]

8 Weights change = the
distribution of the layer inputs
changes per round

= Covariance shift

o Normalize the layer inputs with z Batch
batch normalization

= Roughly speaking, normalize x; to
N(0,1) and rescale

normalization

NS

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 57

Batch normalization — The algorithm

T Zl L Xi [compute mini-batch mean]

0 0 «— Z L (x;—pug)® [compute mini-batch variance]

~ xl UB

0 X €
2
/073+£

o Vieyx+p [scale and shift input]

/

Tvrainable
Par'ame+er'9

[normalize input]

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 58

Regularization

g Neural networks typically have thousands, if not millions of parameters
o Usually, the dataset size smaller than the number of parameters

o Overfitting is a grave danger

o Proper weight regularization is crucial to avoid overfitting

0" « argming z {(y, aL(x; 01..L)) + AQ0(6)
(xY)S(XY)
o Possible regularization methods
> {,-regularization
o £1-regularization
° Dropout

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 59

{,-regularization

© Most important (or most popular) regularization

0" « argming Z L(y,aL X6y 1)"‘ 2”91”2

(X Y)EXY)
o The ?,-regularization can pass inside the gradient descent update rule

0D = 9) —n (VoL + 26,) =
6+ = (1 - 27,)0®) —11,7,L

o Ais usually about 107,107 \ Weight decay’

because
weigh+9 3e+
smaller

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 60

{1-regularization

o {1-regularization is one of the most important regularization techniques

0" « argming Z L(y,aL X0 1)"‘ 2”91”

(xY)SX.Y)
o Also £4-regularization passes inside the gradient descent update rule
g(t)
t+1) — plt —_—
9(+)_9()—/1nt|9(t)| T]tVQL

o {4-regularization = sparse weights

Sign function
°A 72 = more weights become 0 E e

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 61

Early stopping

o To tackle overfitting another popular technique is early
stopping

o Monitor performance on a separate validation set

o Training the network will decrease training error, as well
validation error (although with a slower rate usually)

o Stop when validation error starts increasing
°This quite likely means the network starts to overfit

§
i\

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 62

Dropout [Srivastava2014]

© During training setting activations randomly to 0
> Neurons sampled at random from a Bernoulli distribution with p = 0.5

o At test time all neurons are used
> Neuron activations reweighted by p

o Benefits
> Reduces complex co-adaptations or co-dependencies between neurons
> No “free-rider” neurons that rely on others
> Every neuron becomes more robust
> Decreases significantly overfitting
> Improves significantly training speed

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 63

Dropout

o Effectively, a different architecture at every training
epoch

oSimilar to model ensembles Original model

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 64

Dropout

o Effectively, a different architecture at every training
epoch

oSimilar to model ensembles
EPochl

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 65

Dropout

o Effectively, a different architecture at every training
epoch
°Similar to model ensembles
Epoch |

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 66

Dropout

o Effectively, a different architecture at every training
epoch
°Similar to model ensembles

Epoch 2

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 67

Dropout

o Effectively, a different architecture at every training
epoch

oSimilar to model ensembles
EPoch 2

o At test time keep all neurons but
multiply output by p (e.g. 0.5) to
compensate for the fact that more
of them are active than during training

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 68

Weight initialization

© There are few contradictory requirements

o Weights need to be small enough

> around origin (6) for symmetric functions (tanh, sigmoid)

> When training starts better stimulate activation functions near their linear regime

> larger gradients = faster training Large gradents

10

— a=tanh(z)

— da/dx

o Weights need to be large enough
> Otherwise signal is too weak for any serious learning™|

00}

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 69

Xavier initialization [Glorot2010]}

o For a = 6x the variance is
var(a) = E[x]*var(0) + E[8]%var(x) + var(x)var(6)

o Since E[x] = E[6] =0
var(a) = var(x)var(8) ~ d - var(xi)var((?i)
o Forvar(a) = var(x) = var(8') = %

o Draw random weights from
9~N(0,/17d)

where d is the number of neurons in the input

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 70

[He2015] initialization for ReLUs

6 Unlike sigmoids, ReLUs ground to 0 the linear activations half the time

o Double weight variance
> Compensate for the zero flat-area =2
> Input and output maintain same variance
> Very similar to Xavier initialization

o Draw random weights from W~N(O,,/2/d) pr]

where d is the number of neurons in the input

ReLU

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 71

Network-in-network [Lin et al., arXiv 2013]

Qs ik, = m:m(w,f"a" ;

(a) Linear convolution layer {b) Mipconv layer

UVA DEEP LEARNING COURSE —
EFSTRATIOS GAVVES

MODULAR LEARNING - PAGE 102

ResNet [He et al., CVPR 2016}

34-layer residual

g

weight layer
F(x) l relu N
weight layer identity

Figure 2. Residual learning: a building block.

UVA DEEP LEARNING COURSE —
EFSTRATIOS GAVVES

MODULAR LEARNING - PAGE 103

No degradation anymore

Without residual connections deeper networks are untrainable

i

" |4‘!’In‘|

= 'ﬂ\' “““““““““““““““““““ =4
¥ 24 5 \
AT 34-layer '
o0 Ay -.‘_' L SV AN e
W == ——— e ——— —— - - === 3 o2
plain-18 ResNer-18 TV A e,
=plain-34 == ResNel-34 34-layer
2 <) ———
0 10 20 k1) 40 50 I 10 20 10 40 50
der. (led) der. (led)

Figure 4, Training on ImageNet. Thin curves denole training error, and bold curves denote validation error of the center crops. Lelt; plan
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot. the residual networks have no extra parameter compared to
their plain counterparts.

ResNet breaks records

Ridiculously low error in ImageNet

Up to 1000 layers ResNets trained

J Previous deepest network ~30-40 layers on simple datasets

method top-5 err. (test)
VGG [41] (ILSVRC'14) 7.32
GoogLeNet [44] (ILSVRC 14) 6.66
VGG [41] (v5) 6.8
PRel.U-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

Data augmentatlon [Krlzhevskv2012]

Random

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 76

Some practical tricks of the trade

For classification use entropy loss

Use variant of ReLU as nonlinearity
Use Adam SGD

Use random minibatch at each iteration
Normalize input to zero mean, unit variance
Use batch-normalization

Use dropout on fully connected layers
Use ResNet architecture

Think about weight inititalization

Do extensive hyperparameter search
Use data augmentation

UVA DEEP LEARNING COURSE —
EFSTRATIOS GAVVES

MODULAR LEARNING - PAGE 95

Case studies

Alexnet
d Or the modern version of it, VGGnet

ResNet
d From 14 to 1000 layers

Google Inception
 Networks as Direct Acyclic Graphs (DAG)

Alexnet

Max

128

pooling

..XJf;h

\/

LrEl

A"'/ &
| 2
_d,.ﬂ-"‘

192 192 128 >< 2
\ 13 \. 12 \ \
25 ; l'. -".;\~.‘ B
3 HA 3 ,
3} i i 13 dense| [dense
i
192 192 128 Max =
Max pooling 2%9E
pooling

1600

2048

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
al the bottom. The GPUs communicate only at certain layers. The network’s input is 150.528-dimensional, and
the number ol neurons in the network’s remaining layers is given by 253 440-186,624-64,896-64.896-43,264 -

40964096 1.

Architectural details

18.2% error in lmagenet

Dropout

4,096

Layer 7

Dropout

096

Layer6

-+

o
o

X

3Ix3

5x5

11 x 11

Removing layer 7

1.1% drop Ln performance, 16 million less parameters

)
o

IxX3

(¥l

(¥

11x11

Removing layer 6, 7

5.7% drop in performance, 50 million less parameters

™~
2
0

5x5 3x3 3X3 3x3

11 x11

Removing layer 3, 4

2.0% drop ln performance, L million Less parameters. whiy?

Loss
#

-~

4,096

Removing layer 3, 4, 06, 7

23.5% drop in performance. Conclusion? Depth!

Ix3

5x5

5&:@

Credit: R. Fergus slides in Deep Learning Summer School 2016

Translation invariance

w— L awn Mower

—Shih-T2u
s African Crocodile
- African Grey
— Entertralnment Caentar

-20 0
Vertical Translation (Pixels)

Credit: R. Fergus slides in Deep Learning Summer School 2016

E&:O

-1 - ﬂ.

Credit: R. Fergus slides in Deep Learning Summer School 2016

Scale invariance

—Lawn Mower
s Shih=Tzu
—— African Crocodile

~ Afncan Grey

= Erterirainment Center

o
:
QL
)
=

@,

P e

1 1.2

1.4 1. 1.8
Scale (Ratio)

Credit: R. Fergus slides in Deep Learning Summer School 2016

)
:‘)
@
4 6T
-
@,

Credit: R. Fergus slides in Deep Learning Summer School 2016

Rotation invariance

' Y
Zzy 1 V‘I |’ﬁ| '4 I‘,‘ R
i A Y |\| U | l| “ I |

i
T ' —— Lawn Mower V l ,:‘
%06 e Shih=Tzu |4 A A
g I — African Crocodile | l ‘ 1 '
o 05 —— Atrican Grey I I |
é 0.4 ’ e Ertesrtrainment Center l‘ 'N
s | * |

SALT AV ‘
0 50 100 150 200 250 300 350
Rotation Dagraes

Credit: R. Fergus slides in Deep Learning Summer School 2016

Google Inception V1

Instead of having convolutions (e.g. 3 X 3) directly, first
reduce features by 1 X 1 convolutions
d E.g., assume we have 256 features in the previous layer
J Convolve with 256 x 64 x 1 X 1
J Then convolve with 64 X 64 x 3 X 3
J Then convolve with 64 X 256 X 1 x 1

Filter
concatenation
- — —=] o
P s 3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions ’ 4 ’
i.\ 1x1 convolutions 1x1 convolutions 3x3 max pooling
o~
e | —— | N
Praevious layer

Credit: https://culurciello.qithub.io/tech/2016/06/04/nets.html

https://culurciello.github.io/tech/2016/06/04/nets.html

State-of-the-art

Inception-v4
80 -
Inception-v3 ° ,' ResNet-152
ResNet-50 ‘ S VGG-16 VGG-19
75 1 ResNet-101
’ ResNet-34
= 70 - ﬂ ResNet-18
>
® °° GoogleNet
3 ENet
e 65 -
'é o BN-NIN
F 60 - 5M 35M 65M 95M 125M 155M
BN-AlexNet
55 AlexNet
50 : - y ' ; : . .
0 5 10 15 20 25 30 35 40

Operations [G-Ops]

Credit: https://culurciello.qgithub.io/tech/2016/06/04/nets.html

https://culurciello.github.io/tech/2016/06/04/nets.html

Recurrent Networks

So far, all tasks assumed stationary data

Neither all data, nor all tasks are stationary though

Sequential data

Or ...

you'can be cool e

What about text that is naturally sequential?

We need memory to handle long range

correlations.
B

. vord

‘: L/ | —— Pr(X) —_ r[PI‘(X,;|X1, ---rxi—l)
t) .
L? f#‘ ‘

butinever,a parrot
wearing a hoodig/cool

Recurrent Networks

Simplest model
d Input with parameters U
J Memory embedding with parameters W
J Output with parameters V

Ou’rpu’r Ve

Ou+|9u+
ParameJrer‘s

Memory
Parame+er9

InPu+ U rout
ParameJrer“s xﬁ

Recurrent Networks

Simplest model
d Input with parameters U
J Memory embedding with parameters W
J Output with parameters V

Cutput Yt YVt+1

Ou+|9u+

[B\arameJrers
emory

ParameJre
rs

InPu+ U rout U
ParameJrer“s xﬁ

Recurrent Networks

Simplest RNN

d Input with parameters U
J Memory embedding with parameters W
J Output with parameters V

Cutput Yt YVt+1 Vt+2 Yt+3

Ou+|9u+

[B\arameJrers
emory

ParameJre
rs

InPu+ U rout U U U
ParameJrer“s xﬁ -

Xt+1 Xt42 Xt+3

Folding the memory

unrolled/unfolded Folded
Network Network
Vi Visa Vien Ve
v
W
Ct
(Ct-1)
U U U

X+ Xta1 Xt Xt

RNN vs NN

What is really different?
QO Steps instead of layers

O Step parameters shared whereas in a Multi-Layer Network they are different
O Input at every layer instead of only at first layer.

‘Layer/step’ 'Layer/step’ ‘Layer/step’
Y1 2 Y2 3 Y3
w, | & [w,| &
_] = e
) m
S 3
- DN
3-gram Unrolled Recurrent 3-layer Neural

Network Network

¢ 12D

Training an RNN

Cross-entropy loss

1
) QO R
t,k t t

Backpropagation Through Time (BPTT)

Be careful of the recursion. The non-linearity is influencing
itself. The gradients at one time step depends on
gradients on previous time steps

 Like in NN - Chain Rule
 Only difference: Gradients survive over time steps

RNN Gradients

L= L(cr(cr=1(...(c1(xy, co; W), W), W); W)

0L, ~o 0L dc, dc,
ow s dc, O, OW

T

0L dcy 0L Odcy Oceq acr+1< . 0Ly
dc, dc, 0c; 0cey 0cen T dc. 1 dc,

6ct
0Ct—1

The RNN gradient is a recursive product of

Vanishing/Exploding gradients

-
dL 0L _ , iIShi
9L 0L Odcp Ocry 06wy | oc 4 _ Vanishing
dc, dcp Ocp_q OCT_ dce, ow gradient
<1 <1 <1 —
0L 0L OCT OCT_l 0C1 oL EXpIOdlng
il . o - —»1= -
dc; Odcp dcp_q OCT—_» dce, ow gradient

>1 > 1 > 1

Advanced RNN: LSTM

o € (0,1): control gate — something like a switch
tanh € (—1,1): recurrent nonlinearity

i=0(xU® +m_,w®) Ce-1 P

2
f=0a(xUD+m_wh) 0
0o =0c(x U@ +m,_ W®) f

¢ = tanh(x, U9 + m,_,Ww9)
=1 Of+G Ol

m; = tanh(c;) © o

Me-1

Bringing Structure to
Visual Deep Learning

Standard inference

N-way classification

Car? Plane?

Cat? Bike?

V4

© O O O

Standard inference

N-way classification

How popular will this movie be in

Regression MDB? O

Standard inference

N-way classification

Who is older?

Regression

Ranking

N-way classification

Hiw pepalarwil. Las mavie dcin

Regression

Ranking

They all make “single value” predictions

Do all our machine learning tasks
boil down to “single value” predictions?

Beyond “single value” predictions?

Do all our machine learning tasks
boil to “single value” predictions?

Are there tasks where outputs
are somehow correlated?

Is there some structure
In these output correlations?

How can we predict such structures?
3 Structured prediction

Object detection

Predict a box around an object

Images

[Spatial location
[bounding box (bbox)

Videos
A Spatio-temporal location
 bbox@t, bbox@t+1, ...

Object segmentation

Image Class map Instance map Part map Part map (high level

Optical flow & motion estimation

Depth estimation

Input left Ours stereo Ours mono

Godard et al., Unsupervised Monocular Depth Estimation with Left-Right Consistency, 2016

Structured prediction

Prediction goes beyond asking for “single values”
Outputs are complex and output dimensions correlated
Output dimensions have latent structure

Can we make deep networks to return structured
predictions?

Convnets for structured prediction

Sliding window on feature maps

Selective Search Object Proposals [Uijlings2013]
SPPnet [He2014]
Fast R-CNN [Girshick2015]

b — : Outputs: bbox
ay DU moeer softmax regressor
P o R0 | ConvNet , T

Rol FC =3 FC

" ' pooling
|- Rol I .""'— C
A =projection 8

Conv\—\ Rol feature

featu re ma p VeCtor For each Rol

Fast R-CNN: Steps

Fast R-CNN [Girshick20135]

Olo QO o

Sl ellslie|l @

=z > P >S5 =)
< <<

=11 Nl || & |Len

Conv 5 feature map

Fast R-CNN: Steps

Process the whole image up to convd
Compute possible locations for objects

|l AUOD
¢ AUOD

¥ AUOD

4 AUO:_)

Conv 5 feature map

Fast R-CNN: Steps

Process the whole image up to convd

Compute possible locations for objects
(d some correct, most wrong

|l AUOD
¢ AUOD

¥ AUOD

4 AUO:_)

Conv 5 feature map

Fast R-CNN: Steps

Process the whole image up to convd

Compute possible locations for objects
(d some correct, most wrong

Given single location — ROI pooling module extracts fixed
length feature

¢ AUOD

¥ AUOD

|l AUOD

=

g AU0D

Always 4x4 no
matter the size
of candidate
location

Conv 5 feature map

Fast R-CNN: Steps

Process the whole image up to convd

Compute possible locations for objects
(d some correct, most wrong

Given single location — ROI pooling module extracts fixed
length feature

ROI Pooling
Module
SIS EIE
211211212 |2 —
=N PO

Always 4x4 no
matter the size
of candidate
location

Conv 5 feature map

Fast R-CNN: Steps

Process the whole image up to convd

Compute possible locations for objects
(d some correct, most wrong

Given single location — ROI pooling module
extracts fixed length feature

ROI Pooling
Module
SIS EIE
211211212 |2 —
=N PO

Always 4x4 no
matter the size
of candidate
location

Conv 5 feature map

Fast R-CNN: Steps

Process the whole image up to convd
Compute possible locations for objects

New box

(1 some correct, most wrong Carfdog/bicycle coordinates
Given single location — ROI pooling module @
extracts fixed length feature

ROI Poolag
Module>
—)

Always 4x4 no
matter the size
of candidate
location

O o O o

Sl ellslie|l @

= > P >S5 =)
< <<

=N PO

Conv 5 feature map

Some results

Fast R-CNN

Reuse convolutions for different candidate boxes
[Compute feature maps only once
Region-of-Interest pooling

 Define stride relatively — box width divided by predefined
number of “poolings™ T

 Fixed length vector
End-to-end training!
(Very) Accurate object detection
(Very) Faster

1 Less than a second per image
External box proposals needed

Faster R-CNN [Girshick20106]

Fast R-CNN

J external candidate locations chissifis

Faster R-CNN y .
21

J deep network proposes candidate

Slide the feature map ”V

J k anchor boxes per slide

Region Proposal Network
2k scores f I 4k coordinates == & anchor boxes feature maps
4 r

cls layer ‘ t reg layer

' 256-d ' } ‘

intermediate layer
t T‘_ﬁ: - coav layers /
\ \ 1 e
’ v R
) v Figure 2: Faster R-CNN is a single, unified network
sliding window 2 T a : ; ;
: for object detection. The RPN module serves as the
conv feature map g ‘attention’ of this unified network.

Region Proposal Network

Image Segmentation: Fully Convolutional

[LongCVPR2014]

Image larger than network input
(1 slide the network

Is this pixel a camel?
[l Yes! JPNo!

Image Segmentation: Fully Convolutional

[LongCVPR2014]

Image larger than network input
(1 slide the network

Is this pixel a camel?

'l _ '|'E* [l Yes! JPNo!

Image Segmentation: Fully Convolutional

[LongCVPR2014]

Image larger than network input
(1 slide the network

Is this pixel a camel?

'l _] [l Yes! JPNo!

Image Segmentation: Fully Convolutional

[LongCVPR2014]

Image larger than network input
(1 slide the network

Is this pixel a camel?
- [l Yes! JNo!

=

LY
alVLY

Image Segmentation: Fully Convolutional

[LongCVPR2014]

Image larger than network input
(1 slide the network

Is this pixel a camel?
[l Yes! JPNo!

=

Deep ConvNets with CRF loss

[Chen, Papandreou 2016]

Input

Aeroplane
Coarse Score map
Deep
Convolutional e
—p — ——
Neural |
Network

l

Bi-linear Interpolation

Final Output Fully Connected CRF

Deep ConvNets with CRF loss

[Chen, Papandreou 2016]

Segmentation map is good but not pixel-precise
— Details around boundaries are lost

Cast fully convolutional outputs as unary potentials
Consider pairwise potentials between output dimensions
Include Fully Connected CRF loss to refine segmentation

lf(x) = 29((x;) + X.0;; (x[i»xj)

Total loss Unar'y loss Pairwise
loss

97 (1, x;)~ wy exp (—a|Pi - 1?9]'|2 - B|I; - lj|2) + wy exp(—y|p; — Pj|2)

Examples

Discovering structure

Standard Autoencoder

Error L

Output: reconstructionx

Input: x

Standard Autoencoder

The latent space should have fewer dimensions than input
J Undercomplete representation
J Bottleneck architecture

Otherwise (overcomplete) autoencoder might learn the
identity function

Wxl = x=x = L=0
J Assuming no regularization
 Often in practice still works though

Also, if z= Wx + b (linear) autoencoder learns same
subspace as PCA

Denoising Autoencoder
N T~

Output: reconstruction x

Error L ‘ '

al=1sa

=
i S 8

Corrupted input: X

Input: x

Denoising Autoencoder

The network does not overlearn the data
[Can even use overcomplete latent spaces

Model forced to learn more intelligent, robust
representations
[Learn to ignore noise or trivial solutions(identity)
d Focus on “underlying” data generation process

DAE Increasing noise

T

B (0%, 1060, 2066, SO% corruption)

Variational Autoencoder

We want to model the data distribution

p(x) = j po(2)pe (x|2)dz

Posterior pg (z|x) is intractable for complicated likelihood
functions py(x|z), e.g. a neural network = p(x) is also
Intractable

Introduce an inference machine q,,(z|x) (e.g. another

neural network) that learns to approximate the
posterior pg(z|x)

A Since we cannot know pg (z|x) define a variational lower bound
to optimize instead

L(6,9,x) = =Dk (94 (z10)|Ipe (2)) + Eq,, (z12) (l0g pa (x]2))

Regularization term Reconstruction term

Examples

DAV SAANNNAANNNNNSNNNNSNS
QAIAY M ELELELLLLLW NN~
QAVINNNRELELLLOVYY Y NN~
QAVAVVNNINLNLy ot G VYWV W -~~~
QUAVVHIHINNKVGWBWBVIVVY W -
QAVODOHINHININNHEBPBDIIVIY DS - ——
QAOAQOUIMHIMNMMMMN MBI DI D 9 = ——
QOOQODMMNMMMNM®OOD DD o e —
OODOMMMN MDD WS DD D e e —
QODOWMM MMM M0N0 W DD e e
QOOMMMOMMM MO0 LW N on o o e
QOMMM M " 00000000 oo - —
DA% 0% 0700000000 0n o~ 0 0 0 o =
R L L G o O o e
i~
Jaddddadodogorororrorrrraaon~
SdadadddocrrrrrrrFIIINN
SddddgorrrrrrFrFTITRIRINN
SAdITTTrrrrrrrrr2rR™2RANN
S B g gt i ol ol <l ol ol ol ol Sl Sl O N NN

-~

e~k
R

AR

ik
i
i
i
K
.

(b) Learned MNIST manifold

(a) Learned Frey Face manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent

space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-

dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative

pe(x|z) with the learned parameters 6.

Generative Adversarial Networks

Composed of two successive networks
O Generator network (like upper half of autoencoders)
 Discriminator network (like a convent)

Learning
J Sample “noise” vectors z
U Per z the generator produces a sample x

J Make a batch where half samples are real,
half are the generated ones

J The discriminator needs to predict what is real
and what is fake

Generative Adversarial Networks

DiscriminatormIl

“Police vs Thief”

Generator and discriminator networks optimized together
 The generator (thief) tries to fool the discriminator
W The discriminator (police) tries to not get fooled by the generator

Generative adversarial networks (conceptual)

Real world ——{ Sample |
images \ Real

f Discriminator 2
Fake

4

Generator —1 Sample

§507

nt random variable
000

1 1
J(D) = _§ L ~Paata 10g D(iB) o §Ez log (1 =1 (G(Z)))

JG) — _ 7(D)

Examples

Image “arithmetics”

without glasses without glasses WOV W) (resnes

Thank you!

