Toward automated quality control for hydrometeorological weather station data

Tom Dietterich

Tadesse Zemicheal

Download the Python Notebook

https://github.com/tadeze/dsa2018

Outline

- TAHMO Project
- Sensor Network Quality Control
 - Rule-based methods
 - Probabilistic methods
 - SENSOR-DX approach
- Exercises
 - Anomaly detection for temperature, relative humidity, and atmospheric pressure
 - Mixture regression model for precipitation

TAHMO: Motivation

- Africa is very poorly sensed
 - Only a few weather stations reliably report data to WMO (blue points in map)
 - Poor sensing →No crop insurance →Low agricultural productivity

TAHMO Goal:

- Make Africa the best-sensed continent & improve agriculture
- Self-sustaining non-profit company

TAHMO very big; GPM small

Do we need ground sta

 Scatterplot of precipitation estimate from satellite (NASA GPM) versus TAHMO station at South Tetu Girls High School

> TAHMO > 0;GPM = 0

Business Plan

- Negotiate Memoranda of Understanding (MOUs) with each country in Sub-Saharan Africa
- Raise funds (gifts and grants) to develop and deploy weather stations
- Operating funds provided by selling the data
 - Free access for
 - The meteorological agency in each country
 - Education
 - Research

Memoranda of Understanding (MoUs)

MoU's

Kenya

Ghana

Malawi

Benin

Togo

Mali

Burkina Faso

Uganda

Ethiopia

Tanzania

Nigeria

South Africa

Close to complete

Rwanda

Ivory Coast

Cameroon

Zambia

Senegal

Finances

- Deployment cost
 - 20,000 stations x \$2000 per station = \$40M
- Operating cost
 - \$600/stations/year = \$12M
- Weather data market
 - Estimate \$40,000M/year
- Status: >500 stations deployed
 - Funding from USAID, UN, EU, IBM
 - School2School program

Technology

- Weather Stations
- Automated Quality Control

Generation 1 Weather Station

- cables
- 3 moving parts
- 5 components

Generation 3 station

- No moving parts
- No cables
- Two components

Generation 3 Features

- Solar power
- 6-month reserve battery
- GSM/GPRS radio
- GPS & Compass
- Temperature (3 ways)
- Relative Humidity
- Accelerometer
- Sonic wind
- Drip-count rain
- Shortwave solar radiation
- Barometer
- Lightning detector
- 5 open sensor ports: soil moisture etc.

Station Placement and Security

- General strategy: Place stations at schools
 - Teacher monitors the station and clean it regularly
 - Use the station as an educational resource
 - TAHMO provides educational materials and lesson plans
 - Students can download data and analyze it
- School2School Program
 - Schools in US and Canada can purchase two stations
 - One for their school
 - One for a school in Africa
 - Students learn about their partner school starting with the weather

Current Status

Uganda and Kenya

Quality Control

- Weather Sensors Fail
 - Solar radiation sensor gets dirty
 - Wind sensors (anemometers) get dirty or blocked
 - Rain gauge becomes obstructed
 - Novel failures occur often
- Battery Failure
 - Poor cellular telephone connectivity

Ant Infestation

Wasps in the Anemometer

Data Quality Control

An ideal method should produce two things given

raw data:

Data Quality Control

An ideal method should produce two things given

raw data:

A label that marks anomalies

Data Quality Control

An ideal method should produce two things given

raw data:

A label that marks anomalies

An imputation of the true value (with some confidence measure)

Dereszynski &, Dietterich, ACM TOS 2011.

Existing Approaches to Quality Control

- Manual Inspection (used at H J Andrews LTER)
- Complex Quality Control (OK Mesonet)
- Probabilistic Quality Control (Rawinsonde Network)
- All of these require large amounts of expert time
- TAHMO is much larger than these networks
- TAHMO will be larger than the networks used by the US National Weather Service
- We need a fully-automated QC method

Existing Methods 1: Complex Quality Control

- Rule-based approach that raises an alarm if a rule is violated
 - Step test: $x_{t+1} x_t < \theta_1$
 - Flatline test: # of consecutive steps where $x_{t+1} = x_t$ must be $< \theta_2$
 - Buddy test: $|x_t y_t| < \theta_3$ for two identical sensors x and y

- ...

Complex Quality Control

- Problems:
 - No unifying principles
 - Considers each variable separately
 - Hard to maintain
- Advantages:
 - Practical
 - Easily extended by adding new rules
 - Does not require a model of the signals

Probabilistic Quality Control

- Define s_t to be the state of the sensor at time t
 - $s_t \in \{0,1\}$ where 0 = OK and 1 = Broken
- $P(x_t|s_t=0)$ is the "normal" probability density for the sensor
- $P(x_t|s_t=1)$ is the "broken" probability density for the sensor
- $P(s_t)$ is the prior over sensor states

Challenge: Modeling the Broken distribution

- •Modeling P(x|s=0)
 - Lots of data; virtually all data points are from this case
 - However, the distribution may still be complex
- •Modeling P(x|s=1) is very difficult
 - Bad sensor values are rare, so little data
 - Sensors break in novel ways, so hard to predict the sensor readings

Hack: "Junk Bucket" Distribution

- Assume $P(x_t|s_t = 1)$ is the uniform distribution
- This is equivalent to setting a threshold on $P(x_t|s_t=0)$
- Hard to do this well
- Hard to model multiple sensors

Our Idea: Apply Anomaly Detection Methods

- Suppose we could assign an anomaly score $A(x_t)$ to each observation x_t
 - Scores near 0 are "normal"
 - Scores > 0.5 are "anomalous"
- Learn a probabilistic model of the anomaly scores instead of the raw signals

$$P(A(x_t)|s_t)$$

Basic Configuration

Observe X_t Compute $A(X_t)$ Compute $\arg \max_{s_t} P(s_t) P(A(X_t)|s_t)$

Cool Things We Can Do: Model Persistence of Sensor State

 $P(s_{t+1}|s_t)$ encodes persistence of sensor state

- Sensors that are working usually continue working
- Sensors that are broken usually stay broken (until cleaned/repaired)

Cool Things We Can Do #2: Model the Joint Distribution of Sensors

Example:
Temperature and
Relative Humidity
are strongly
(negatively)
correlated

July 2009

Joint Anomaly Detection

SENSOR-DX: Multiple View Approach

- Single sensor over K time steps
 - $A(x_{t-K+1}, x_{t-K+1}, ..., x_{t-1}, x_t)$ captures this distribution
- Rate of change of sensor signals
 - $A(X_t X_{t-1})$ is like a "step test" in CQC
- Differences between nearby weather stations
 - $A(X_t(\ell_1) X_t(\ell_2))$
- Difference between current value and value predicted from spatial neighbors
 - $A(x_t(\ell) f(x_t(\ell'_1), ..., x_t(\ell'_k)))$

Diagnostic Model

Run Time Quality Control

- Assemble incoming data into view tuples
- Compute anomaly score for each view tuple
- Perform probabilistic inference to determine which sensor states best explain the observed anomaly scores:

$$\operatorname{arg\,max}_{S} P(S|A(V))$$

Online Probabilistic Inference

- We can't wait for a whole year of observations before detecting broken sensors
- We have developed an incremental probabilistic inference approach

Data time: 2 Diagnosis time: 0

Data time: 3 Diagnosis time: 1

Data time: 4 Diagnosis time: 2

Computing Anomaly Scores

Many different possibilities

- 1. Joint Model *P*(*TEMP*, *RELH*)
 - Challenge: Joint relationship depends on day of year, amount of water in atmosphere
- 2. Time Series Model $P(TEMP_t|TEMP_{t-1},TEMP_{t-2},...)$
 - Challenge: Seasonal variation, Daily variation, Weather system variation
- 3. Regression from Nearby Station
 - Because nearby weather station experiences the same dependencies on atmospheric water content, season, day, and weather system, it compensates for all of these sources of variation

Regression-Based Density Estimation

- Consider the view $\langle Temp(\ell,t), Temp(\ell',t) \rangle$ for two nearby weather stations ℓ and ℓ'
- We can fit a regression model

$$Temp(\ell, t) \approx \beta_0 + \beta_1 Temp(\ell', t)$$

- Ordinary least squares regression assumes that the response variable $Temp(\ell,t)$ has a normal distribution with
 - mean $\hat{\mu}_t = \beta_0 + \beta_1 Temp(\ell', t)$
 - variance $\hat{\sigma}_t^2 = \mathbb{E}[(Temp(\ell, t) \hat{\mu}_t)^2]$
- We can compute the anomaly score as
 - $-\log Normal(Temp(\ell, t); \hat{\mu}_t, \hat{\sigma}_t^2)$

Linear Regression for Temperature

- Predicting temperature of KENT from temperature at BOIS (in Oklahoma, US)
- Temperature at 0:00UTC each day of 2009
- $\overline{KENT} = 0.7344 + 0.9677 BOIS$

How Good is the Normal Distribution Assumption?

- This is a Q-Q plot
- X axis is the quantile of each residual according to the fitted Normal distribution
- Y axis is empirical quantile of each residual
- A perfect fit would have all points in the dotted line
- The residuals have heavier tails than the Gaussian

Kernel Density Estimate of the Residuals

- scikitlearn.neighbors.kdeKernelDensity
- R: "density" automatically selects σ^2
- Replaces the assumption of a Gaussian distribution

Precipitation is very hard

Precipitation

- Often exactly zero
- Very "bursty"; highly non-Gaussian
- We model the distribution as a mixture of two components
 - with probability p_0 we predict RAIN = 0
 - with probability $1 p_0$ we draw an amount of rain according to P(RAIN|RAIN > 0).
- The amount of rain should be positive, so we need to use a distribution over the positive real numbers
 - One solution is to predict log(RAIN)

Kernel Density of log(RAIN)

 $P(\log(RAIN)|RAIN > 0)$

Recall: Density Estimation under Transformations

To convert this to a density estimator f(x) for x, we must divide by x:

$$f(x) = \frac{g(\ln x)}{x}$$

The general rule is the following

$$f(x) = g(y(x)) \left| \frac{dy}{dx} \right|$$

In our case $y(x) = \ln x$ and $\frac{dy}{dx} = \frac{1}{x}$

Computing an Anomaly Score for RAIN

If
$$RAIN = 0$$
, $-\log p_0$

If
$$RAIN > 0$$
, $-\log\left[(1 - p_0)\frac{P(\log RAIN)}{RAIN}\right]$

Predicting RAIN at one station ℓ from a neighboring station ℓ'

Does not look promising

Conditional Mixture Model

- Condition each part of the Mixture Model on the neighboring station
- Linear Models:
 - Logistic regression model of $p_1 = 1 p_0$:
 - $\log \frac{p_1}{1-p_1} = a + b \, Rain(\ell')$
 - Regression model for amount of rain
 - $\ln Rain(\ell) = c + d \ln Rain(\ell') + \epsilon$
 - **Use KDE** over the residuals ϵ

Predicting probability of rain

- Convert KENT rain to 0/1 variable "YES"
- Fit logistic regresion: logit(YES) = a + b BOIS

ROC Curve: AUC = 0.8397

Challenge: Imperfect Rain Prediction

- The model for $p_1 = P\big(Rain(\ell) = 1|P(rain(\overline{\ell'}))$ will not be perfect
- Therefore, we cannot train the model for $P(Rain(\ell))$ using only non-zero values of Rain
- Solution: Add a small ϵ before taking the log
 - $\ln(Rain(\ell) + \epsilon) = c + d\ln(Rain(\ell') + \epsilon)$
 - For each training example $(Rain(\ell',t),Rain(\ell,t))$, we employ a weight $w_t = P(Rain(\ell,t) = 1|Rain(\ell',t))$
 - Find (c,d) to minimize the weighted squared error

$$P(Rain(\ell)) = \frac{P(\ln(Rain(\ell') + \epsilon))}{Rain(\ell) + \epsilon}$$

I used $\epsilon = 0.1$

Quantitative Rain Prediction (log scale)

Quantitative Rain Prediction (in mm)

Residuals (log scale)

KENT anomaly score results

Fake failure for days 100-110

Summary

- TAHMO is creating a weather station network of unprecedented size
 - QC must be automated as much as possible
- Existing QC Methods
 - Rule-based (ad hoc)
 - Probabilistic (requires modeling the sensor values when the sensor is broken)
- SENSOR-DX Approach
 - Define multiple views
 - Fit an anomaly detector to each view
 - Probabilistic QC by modeling the anomaly scores of broken sensors
 - Diagnostic reasoning to infer which sensors are broken

Summary (2): Anomaly Detection Methods

- Predict sensor readings at station ℓ from a nearby station ℓ'
- For temperature, linear regression works well
 - But residuals are non-Gaussian, so we fit a kernel density estimator
- For Precipitation, we learn a mixture model
 - Logistic regression to predict $p_1 = P(RAIN(\ell) = 1)$
 - Weighted linear regression after transforming by $\log Rain(\ell) + \epsilon$
 - Again, residuals are non-Gaussian, so fit KDE

Exercise:

https://github.com/tadeze/dsa2018

- Fit the Probabilistic Precipitation Model for Three Stations in Kenya
- Insert fake sensor failures
- Measure how well we can detect these sensor failures
 - Set a threshold: $-\log P(RAIN(\ell)) > \theta$
 - What value of θ can detect all of the fake failures but minimize false alarms?
 - Precision at 100% Recall
 - How bad are the false alarms?