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Download the Python Notebook |

= https://github.com/tadeze/dsa2018



https://github.com/tadeze/dsa2018

Outline

*TAHMO Project

=Sensor Network Quality Control
= Rule-based methods

= Probabilistic methods
= SENSOR-DX approach

=Exercises

= Anomaly detection for temperature, relative humidity, and
atmospheric pressure

= Mixture regression model for precipitation

DSA 2018 Nyeri 3



TAHMO: Motivation

= Africa is very poorly sensed

= Only a few weather stations reliably report
data to WMO (blue points in map)

= Poor sensing =»No crop insurance =»Low
agricultural productivity

= TAHMO Goal:

= Make Africa the best-sensed continent &
Improve agriculture

= Self-sustaining non-profit company

DSA 2018 Nyeri




Scatterplot of
precipitation estimate
from satellite (NASA
GPM) versus TAHMO
station at South Tetu
Girls High School

TAHMO > 0;
GPM =0

Regression line fitted fz

TAHMO very big;
GPM small

years 2016-2017

GPM (mm)

TAHMO = 0;
GPM >0



Business Plan |.

=Negotiate Memoranda of Understanding (MOUSs) with
each country in Sub-Saharan Africa

=Raise funds (gifts and grants) to develop and deploy
weather stations

=Operating funds provided by selling the data

= Free access for
= The meteorological agency in each country
= Education
= Research
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Memoranda of Understanding (MoUS) I

MoU’s Close to complete
Kenya Baanida

Ghana

Malawi

Benin

Togo

Mali

Burkina Faso = e
Uganda e .
Ethiopia

Tanzania

Nigeria

South Africa
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Finances

*Deployment cost
= 20,000 stations x $2000 per station = $40M

=Operating cost
= $600/stations/year = $12M

=\Weather data market
= Estimate $40,000M/year

= Status: >500 stations deployed
= Funding from USAID, UN, EU, IBM
= School2School program
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Technology

*Weather Stations
= Automated Quality Control



Generation 1 Weather Station

=cables

=3 moving
parts

=5 components
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Generation 3 station

=No moving parts
=No cables
= Two components
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Generation 3 Features

= Solar power

= 6-month reserve battery
= GSM/GPRS radio

= GPS & Compass

= Temperature (3 ways)

* Relative Humidity

= Accelerometer

= Sonic wind

= Drip-count rain

= Shortwave solar radiation
= Barometer

= Lightning detector

= 5 open sensor ports: soil moisture etc.
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Station Placement and Security

= General strategy: Place stations at schools
= Teacher monitors the station and clean it regularly

= Use the station as an educational resource
= TAHMO provides educational materials and lesson plans
= Students can download data and analyze it

= School2School Program

= Schools in US and Canada can purchase two stations
= One for their school
= One for a school in Africa
= Students learn about their partner school starting with the weather
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Current Status

Sl

271 stations
West Africa

240 stations ~
East/South Africa

. Countries to have > 20 stations in 2017

. Countries with fewer stations (number indicated)
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Quality Control

=Weather Sensors Fall
= Solar radiation sensor gets dirty

= Wind sensors (anemometers)
get dirty or blocked

= Rain gauge becomes obstructed
= Novel failures occur often
=Battery Failure

= Poor cellular telephone
connectivity
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Ant Infestation




Wasps in the Anemometer |
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Data Quality Control

=An ideal method should produce two things given
raw data:
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Data Quality Control

=An ideal method should produce two things given

raw data:

= A label that
marks anomalies
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Data Quality Control

=An ideal method should produce two things given

raw data:

= A label that
marks anomalies

= An imputation
of the true value
(with some
confidence measure)
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Existing Approaches to Quality Control I.

=Manual Inspection (used at H J Andrews LTER)
=Complex Quality Control (OK Mesonet)
= Probabillistic Quality Control (Rawinsonde Network)

= All of these require large amounts of expert time
*TAHMO iIs much larger than these networks

=TAHMO will be larger than the networks used by the
US National Weather Service

*We need a fully-automated QC method
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Existing Methods 1.
Complex Quality Control |.

*Rule-based approach that raises an alarm if a rule Is
violated
= Step test: x4 — x; < 64
= Flatline test: # of consecutive steps where x;,; = x; must be
< 0,

= Buddy test: |x; — y;| < 65 for two identical sensors x and y
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Complex Quality Control

*Problems:
= No unifying principles
= Considers each variable separately
= Hard to maintain

= Advantages:
= Practical
= Easily extended by adding new rules
= Does not require a model of the signals
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Probabilistic Quality Control |

= Define s; to be the state of the
sensor at time t working
s € {0,1}where 0=0OKand 1 = "
Broken '
= P(x¢|s; = 0) Is the “normal”
probability density for the
sensor
" P(x¢|s; = 1) Is the “broken”
probability density for the
sensor

= P(s;) IS the prior over sensor
EStfitEEES Sensor value

. _ _ P(sp)P(x¢|st)
Query: P(s¢|x;) = P(x¢)

=
n
j
o)
O
=
e
®
o)
o
o

broken
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Challenge:
Modeling the Broken distribution |.

=Modeling P(x|s = 0)
= Lots of data; virtually all data points are from this case
= However, the distribution may still be complex
=Modeling P(x|s = 1) Is very difficult
= Bad sensor values are rare, so little data

= Sensors break in novel ways, so hard to predict the sensor
readings
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Hack: “Junk Bucket” Distribution |.

"Assume P(x;|s; = 1) IS |
the uniform distribution working
. . . /
*This Is equivalent to

setting a threshold on
P(Xt St —_ O)

=Hard to do this well

=Hard to model multiple
Sensors

=
n
j
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O
=
e
®
o)
o
o

broken

Sensor value
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Our ldea:
Apply Anomaly Detection Methods |.

=Suppose we could assign an anomaly score A(x;) to
each observation x;

= Scores near 0 are “normal”
= Scores > 0.5 are “anomalous”

=Learn a probabilistic model of the anomaly scores
Instead of the raw signals

P(A(x¢)|s¢)
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Basic Configuration

Observe X;

Compute A(X;)

Compute argmax P(s;)P(A(X;)|s;)
St

0



Cool Things We Can Do:
Model Persistence of Sensor State |.

P(s¢+11s:) encodes

‘ ‘ persistence of sensor
state

e Sensors that are
working usually
continue working

e Sensors that are
‘ ‘ broken usually stay
broken (until
cleaned/repaired)
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Example: WEBR (Oklahoma)
Temperature and
Relative Humidity
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Joint Anomaly Detection |
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SENSOR-DX:
Multiple View Approach |.

= Capture joint distribution over time and space

= Single sensor over K time steps
" A(X¢—_g+1, Xt—g+1, - Xe—1, X¢) Captures this distribution

= Rate of change of sensor signals
= A(X; — X;_1) is like a “step test” in CQC

= Differences between nearby weather stations
= AX:(£1) — X (£2))

= Difference between current value and value predicted from
spatial neighbors

= AQxc () — f(xe(£1), oo, 2 (£1)))
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Diagnostic Model |
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Run Time Quality Control |

= Assemble incoming data into view tuples
=Compute anomaly score for each view tuple

=Perform probabilistic inference to determine which
sensor states best explain the observed anomaly
Scores:
arg max P(S|A(V))
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Online Probabillistic Inference |.

*We can’t wait for a whole year of observations before
detecting broken sensors

*\We have developed an incremental probabilistic
Inference approach
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Diagnosis time: 2

Data time: 4




Computing Anomaly Scores |

Many different possibilities

1. Joint Model P(TEMP, RELH)

= Challenge: Joint relationship depends on day of year, amount of
water in atmosphere

2. Time Series Model P(TEMP,|TEMP;_,, TEMP;_,, ...)

= Challenge: Seasonal variation, Daily variation, Weather system
variation

3. Regression from Nearby Station

= Because nearby weather station experiences the same
dependencies on atmospheric water content, season, day, and
weather system, it compensates for all of these sources of
variation
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Regression-Based Density Estimation |.

= Consider the view (Temp(¢,t), Temp(£', t)) for two
nearby weather stations ¢ and ¢’

=\We can fit a regression model
Temp(¥,t) = By + B Temp(£’',t)

= Ordinary least squares regression assumes that the
response variable Temp (£, t) has a normal distribution
with
“mean f; = By + B Temp(£', t)
= variance 67 = E[(Temp(¥¢,t) — fi;)?]

=\We can compute the anomaly score as

= —log Normal(Temp(?, t); iy, 67)
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Linear Regression for Temperature |

= Predicting
temperature of
KENT from
temperature at
BOIS (in
Oklahoma, US)

= Temperature at
0:00UTC each day
of 2009

“KENT = 0.7344 + T :
0.9677 BOIS ararsnors

|_
=
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e
=
=
=

20
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. Normal Q-Q
This is a Q-Q plot
X axis is the quantile
of each residual
according to the fitted
Normal distribution
Y axis is empirical
quantile of each
residual

A perfect fit would
have all points in the
dotted line

The residuals have
heavier tails than the
Gaussian
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IM(KENT ~ BOIS)
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SCI kltl earn . n e I g h bo rS ) kde density.default(x = m1$residuals)
KernelDensity -

R: “density” automatically
selects ¢*

Replaces the assumption
of a Gaussian distribution

N =365 Bandwidth = 0.2695
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Precipitation

=Often exactly zero
=Very “bursty”; highly non-Gaussian

=\We model the distribution as a mixture of two
components

= with probability p, we predict RAIN =0

= with probability 1 — p, we draw an amount of rain according
to P(RAIN|RAIN > 0).

*=The amount of rain should be positive, so we need to
use a distribution over the positive real numbers

= One solution is to predict log(RAIN)
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Kernel Density of log(RAIN) |

P(log(RAIN)|RAIN > 0)

density.default(x = log(rain.df$SKENT[KENT.nonzero]))

N =84 Bandwidth = 0.6075
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Recall: Density Estimation under
Transformations |.

"Let g(log x) be our density estimator for log x

=To convert this to a density estimator f(x) for x, we
must divide by x:

~ g(Inx)
fx) = ”

=The general rule is the following
d
“f() = g(y() |5

=In our case y(x) = Inx and

dy
dx_

R |-
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Computing an Anomaly Score for RAIN |.

“If RAIN = 0, — log p,

=If RAIN > 0, —log [(1 . P(log RAIN)

RAIN




Predicting RAIN at one station £ from a
neighboring station ¢’ |.

=Does not look
promising

l—
=
Ll
bt
£
<
=

o

bat

15 20 25 30

rain.df$BOIS
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Conditional Mixture Model |.

=Condition each part of the Mixture Model on
the neighboring station

*Linear Models:
=L ogistic regression model of p; = 1 — py:

=log 1?;1 =a + b Rain(£")

=Regression model for amount of rain
*InRain(¥) = c+dInRain(¥') + €
= Use KDE over the residuals ¢
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Predicting probability of rain

= Convert KENT rain to 0/1 [ s g o 5 @ 00
variable “YES”
= Fit logistic regresion:
logit(YES) = a + b BOIS

m25%fitted.values

rain.df$BOIS
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ROC Curve: AUC = 0.8397 |
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Challenge: Imperfect Rain Prediction I.

= The model for p; = P(Rain(¥) = 1|P(rain(¢")) will not be
perfect

= Therefore, we cannot train the model for P(Rain(¢))
using only non-zero values of Rain
= Solution: Add a small e before taking the log
*In(Rain(®) + €) = c + dIn(Rain(¥’') + €)
= For each training example (Rain(¢',t), Rain(¥,t)), we employ a
weight w, = P(Rain(¥,t) = 1|Rain(£',t))
= Find (¢, d) to minimize the weighted squared error
P(In(Rain(¢')+€))
Rain(f)+e

* P(Rain(¥)) =

=l used € = 0.1
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Quantitative Rain Prediction (log scale) I
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Quantitative Rain Prediction (in mm)
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Residuals (log scale)

N =365 Bandwidth = 0.2308




KENT anomaly score results
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Fake failure for days 100-110
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Summary |.

= TAHMO Is creating a weather station network of
unprecedented size

= QC must be automated as much as possible

= Existing QC Methods
* Rule-based (ad hoc)

= Probabilistic (requires modeling the sensor values when the
sensor is broken)

= SENSOR-DX Approach

= Define multiple views
= Fit an anomaly detector to each view

= Probabilistic QC by modeling the anomaly scores of broken
Sensors

= Diagnostic reasoning to infer which sensors are broken
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Summary (2): Anomaly Detection
Methods |.

=Predict sensor readings at station £ from a nearby
station ¢’

*For temperature, linear regression works well

= But residuals are non-Gaussian, so we fit a kernel density
estimator

*For Precipitation, we learn a mixture model
= Logistic regression to predict p; = P(RAIN(¥) = 1)

= Weighted linear regression after transforming by
log Rain(¥) + €

= Again, residuals are non-Gaussian, so fit KDE
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Exercise:

=Fit the Probabilistic Precipitation Model for Three
Stations in Kenya

*Insert fake sensor failures

=Measure how well we can detect these sensor
fallures
= Set a threshold: —log P(RAIN(£)) > 6

= \What value of 8 can detect all of the fake failures but
minimize false alarms?
= Precision at 100% Recall

= How bad are the false alarms?
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