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Ecosystem Management  
Human activity is affecting ecosystems worldwide 
Result: Ecosystems require active management to 
be healthy 
Endangered species management 
 Invasive species management 
Habitat preservation and reserve design 
Wildfire management 
Agriculture is also a form of managed ecosystem 
Disease management 
Soils management 
Cropping management 
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Example: Tamarisk Invasions in US 
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Tamarisk: invasive tree from the 
Middle East 
 Has invaded over 3 million acres of 

land in the Western United States 
 Out-competes native vegetation for 

water 
 Reduces biodiversity and causes 

species extinction 
 Economically costly 

 
 

What is the best way to manage 
a spatially-spreading organism? 

C.C. Shock, Oregon State University 
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Tamarisk Mathematical Model 
Tree-structured river network 
Each edge 𝑒𝑒 ∈ 𝐸𝐸 has 𝐻𝐻 “sites” where a 

tree can grow. 
Each site can be 
 {empty, occupied by native, occupied by 

invasive} 
 

Management actions 
Each edge: {do nothing, eradicate, plant, 

restore (=eradicate + plant)} 
 

𝑒𝑒1 𝑒𝑒2 

𝑒𝑒3 
𝑒𝑒4 

𝑒𝑒5 

n 
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Muneepeerakul, et al., 2007 J. Theoretical Biology 
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Dynamics 
Discrete time transition model 
 In each time period 
 Natural death 
 Seed production 
 Seed dispersal (preferentially downstream) 
 Seed competition to become established 

 
 

 

𝑒𝑒1 𝑒𝑒2 

𝑒𝑒3 
𝑒𝑒4 

𝑒𝑒5 

n 
n 

t 
n n 
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Optimization Goal 
 Each action in each edge has a cost 𝐶𝐶(𝑎𝑎𝑒𝑒 , 𝑒𝑒) 
 Budget constraint: ∑ 𝐶𝐶(𝑎𝑎𝑒𝑒 , 𝑒𝑒)𝑒𝑒 ≤ 𝐵𝐵; 𝐵𝐵 = 100 

 
 

 
 
 
 
 

 
 Create a “virtual cost” for the invasion 
 At each time step, charge a cost for  
 each invaded edge: 10 
 for each Tamarisk tree in each invaded edge: 0.1 

 
 Minimize the cumulative infinite-horizon discounted cost of management 
 ∑ 𝛾𝛾𝑡𝑡𝑐𝑐𝑡𝑡∞

𝑡𝑡=0  where 𝛾𝛾 = 0.9 is the discount rate and 𝑐𝑐𝑡𝑡 is the cost at time 𝑡𝑡 
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Action Cost 
Do Nothing 0 
Eradicate (per slot) 0.5 
Plant Native (per slot) 0.9 
Both (per slot) 1.4 
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Formulation as a Markov Decision 
Process 
MDP 𝑆𝑆,𝐴𝐴,𝑅𝑅,𝑇𝑇, 𝛾𝛾,𝑃𝑃0  
 𝑆𝑆: Set of states (discrete or continuous).  
 𝐴𝐴: Set of actions (discrete or continuous). 

We will only consider MDPs with a smallish 
number of discrete actions 
 𝑅𝑅: Reward function. 𝑟𝑟𝑡𝑡 = 𝑅𝑅 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡  
 𝑇𝑇: Probability transition function 

(“dynamics”): 𝑇𝑇 𝑠𝑠,𝑎𝑎, 𝑠𝑠′ = 𝑃𝑃 𝑠𝑠′ 𝑠𝑠, 𝑎𝑎  
 𝛾𝛾: Discount factor 𝛾𝛾 ∈ 0,1  
 𝑃𝑃0: Distribution of starting states 

 
We often assume 𝑟𝑟𝑡𝑡 ∈ 0,𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  
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𝑠𝑠𝑡𝑡 

Agent 

Environ
ment 

𝑎𝑎𝑡𝑡 𝑟𝑟𝑡𝑡 

𝑡𝑡 ≔ 𝑡𝑡 + 1 
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Solution to an MDP 
The solution to an MDP is called a Policy: 𝜋𝜋: 𝑆𝑆 ↦ 𝐴𝐴 
 
The optimal policy maximizes the expected 
cumulative discounted sum of rewards: 

𝐽𝐽 𝜋𝜋 = 𝔼𝔼 �𝛾𝛾𝑡𝑡𝑟𝑟𝑡𝑡

∞

𝑡𝑡=0

𝑎𝑎𝑡𝑡 = 𝜋𝜋 𝑠𝑠𝑡𝑡  

𝜋𝜋∗ = arg max
𝜋𝜋

𝐽𝐽(𝜋𝜋) 

where the expectation is taken with respect to 𝑃𝑃0(𝑠𝑠0) 
and 𝑃𝑃 𝑠𝑠𝑡𝑡+1 𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡  
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What is the Best Action? 
Try to kill the tamarisk in 𝑒𝑒2? 
Plant native trees in 𝑒𝑒3? 
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𝑒𝑒1 𝑒𝑒2 

𝑒𝑒3 
𝑒𝑒4 

𝑒𝑒5 

n 



What is the Best Action? 
Try to kill the tamarisk in 𝑒𝑒2? 
Try to kill the tamarisk in 𝑒𝑒5? 
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𝑒𝑒1 𝑒𝑒2 

𝑒𝑒3 
𝑒𝑒4 

𝑒𝑒5 

n 
t 

t 
t 



The manager faces a branching 
state space 
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 𝑠𝑠1 

𝑠𝑠2 

𝑎𝑎1 

𝑎𝑎2 

𝑠𝑠5 𝑠𝑠6 𝑠𝑠7 

𝑠𝑠3 

𝑎𝑎3 

𝑠𝑠8 𝑠𝑠9 𝑠𝑠10 

𝑠𝑠4 

𝑎𝑎4 

𝑠𝑠11 𝑠𝑠12 𝑠𝑠13 

… 

𝑟𝑟1 

𝑟𝑟2 𝑟𝑟3 𝑟𝑟4 



Reinforcement Learning 
Explore the state space to find the rewards 
Figure out what actions to take so that we reach 
those rewards 
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Why is it “Markov”? 
The transition dynamics only depend on the current 
state of the system 
𝑃𝑃 𝑠𝑠𝑡𝑡+1 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡  
The reward function only depends on the current 
state and action 
 
Under these conditions, it can be proved that the 
optimal policy only depends on the current state 
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Variations and Distinctions 
MDP Variations: 
Policies can be stochastic: 𝑎𝑎𝑡𝑡~ 𝑃𝑃 𝑎𝑎𝑡𝑡 𝑠𝑠𝑡𝑡  
Rewards can be stochastic: 𝑅𝑅 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 = 𝑃𝑃 𝑟𝑟𝑡𝑡 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡  
Rewards can depend on the result state: 𝑅𝑅 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 , 𝑠𝑠𝑡𝑡+1  
 
Contextual Multi-Armed Bandits 
Actions do not change state, only produce rewards 
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Variations and Distinctions (2) 
Partially-Observable MDPs (POMDPs) 
Agent does not observe the full state, but instead has noisy 

observations 𝑃𝑃(𝑜𝑜𝑡𝑡|𝑠𝑠𝑠𝑠) 
Actions serve two purposes: (a) to gain information about 

the state of the system and (b) to achieve rewards in the 
system. 
 

Stochastic Games 
Two or more agents interacting with each other 
 In Markov Games, the full state is visible to both players 
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Three Scenarios 
Known MDP 
 The transition function 𝑇𝑇 𝑠𝑠, 𝑎𝑎, 𝑠𝑠′  is available in a form that makes it 

easy to evaluate 𝑇𝑇 𝑠𝑠, 𝑎𝑎, 𝑠𝑠′  given 𝑠𝑠,𝑎𝑎, 𝑠𝑠′ . 
 Transition matrix for each action: 𝑇𝑇𝑚𝑚 𝑠𝑠, 𝑠𝑠′  
 Bayesian network for which inference is tractable 

Simulator MDP 
 The transition function is only available as a simulator. Given (𝑠𝑠,𝑎𝑎) we 

can draw a sample 𝑠𝑠′~ 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 = 𝑇𝑇(𝑠𝑠,𝑎𝑎, 𝑠𝑠′) 
 Strong simulator: Can sample from any 𝑠𝑠,𝑎𝑎  
 Reset simulator: Can reset to 𝑠𝑠0~𝑃𝑃0(𝑠𝑠0) otherwise sample along a 

trajectory 

Real World 
We can only execute actions in the real system. Like a simulator, each 

action gives us a sample 𝑠𝑠′~𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 = 𝑇𝑇 𝑠𝑠,𝑎𝑎, 𝑠𝑠′  
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Three Scenarios (2) 
Known MDP 
 Methods from Operations Research can be applied provided that we 

have memory of size 𝑆𝑆 × |𝐴𝐴| 
 

Simulator MDP 
Real World 
 RL was developed for these two cases 
 RL typically requires many many 𝑠𝑠, 𝑎𝑎, 𝑟𝑟, 𝑠𝑠′  interactions. This is why the 

simulator case is the most common. But there are some applications 
(e.g., in network management) where millions of examples can be 
acquired quickly 
 An important area today is “Sim-to-Real” transfer. RL is applied first on 

a simulator, and then a small amount of additional training is done in 
the real world to adapt the learned policy. 
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Two Tasks: Evaluation & 
Optimization 
Policy Evaluation 
Given a fixed policy 𝜋𝜋 compute 
𝐽𝐽 𝜋𝜋 = 𝔼𝔼 ∑ 𝛾𝛾𝑡𝑡𝑟𝑟𝑡𝑡∞

𝑡𝑡=0 𝑎𝑎𝑡𝑡 = 𝜋𝜋 𝑠𝑠𝑡𝑡  
 

Policy Optimization 
Find the policy 𝜋𝜋∗ that maximizes 𝐽𝐽 𝜋𝜋 .  

 
Notation: The Value Function 
𝑉𝑉𝜋𝜋 𝑠𝑠 = expected cumulative discounted reward for 

executing policy 𝜋𝜋 starting in state 𝑠𝑠.  
𝑉𝑉∗ 𝑠𝑠 = expected cumulative discounted reward for 

executing the optimal policy 𝜋𝜋∗ starting in state 𝑠𝑠 
19 Data Science Africa 2018 



Policy Evaluation 
Known MDP Case 
 Let 𝑉𝑉𝜋𝜋 𝑠𝑠 = 𝔼𝔼 ∑ 𝛾𝛾𝑡𝑡𝑟𝑟𝑡𝑡∞

𝑡𝑡=0 𝑎𝑎𝑡𝑡 = 𝜋𝜋 𝑠𝑠𝑡𝑡 , 𝑠𝑠  
Cumulative reward executing policy 
𝜋𝜋 starting in state 𝑠𝑠 
 

Bellman Equation: 
𝑉𝑉𝜋𝜋 𝑠𝑠 = 𝑅𝑅 𝑠𝑠,𝜋𝜋 𝑠𝑠

+ 𝛾𝛾�𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝜋𝜋 𝑠𝑠 𝑉𝑉𝜋𝜋 𝑠𝑠′

𝑠𝑠′
 

Note: This is a system of linear 
equations 

20 

𝑠𝑠 

𝑎𝑎 

𝑠𝑠𝑚𝑚′  𝑠𝑠𝑏𝑏′  𝑠𝑠𝑐𝑐′  

𝑉𝑉𝜋𝜋 𝑠𝑠𝑚𝑚′  𝑉𝑉𝜋𝜋 𝑠𝑠𝑏𝑏′  𝑉𝑉𝜋𝜋 𝑠𝑠𝑐𝑐′  

𝑅𝑅 𝑠𝑠,𝜋𝜋 𝑠𝑠  

𝜋𝜋 𝑠𝑠  

𝑃𝑃(𝑠𝑠𝑚𝑚′ |𝑠𝑠, 𝑎𝑎) 

𝑃𝑃(𝑠𝑠𝑏𝑏′ |𝑠𝑠, 𝑎𝑎) 
𝑃𝑃(𝑠𝑠𝑐𝑐′|𝑠𝑠, 𝑎𝑎) 
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Policy Evaluation (2) 
Known MDP Case continued 
We can compute 𝑉𝑉𝜋𝜋 via the following algorithm 
For iteration = 1,… 
For state 𝑠𝑠 ∈ 𝑆𝑆 do 
𝑉𝑉𝜋𝜋 𝑠𝑠 ≔ 𝑅𝑅 𝑠𝑠,𝜋𝜋 𝑠𝑠 + 𝛾𝛾 ∑ 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝜋𝜋 𝑠𝑠 𝑉𝑉𝜋𝜋 𝑠𝑠′𝑠𝑠′   

 
This will converge to a fixed point 
This is a form of dynamic programming 
 It is called Value Iteration 
We can visit the states in any order as long as we visit all 

states infinitely many times 
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Policy Evaluation (3) 
Simulator Case for a specific state 𝑠𝑠 
Monte Carlo Estimate 
 For 𝑖𝑖 = 1, … ,𝑁𝑁: 
 Reset the simulator to state 𝑠𝑠 
 Sample a trajectory 𝜏𝜏𝑖𝑖 of length 𝐻𝐻. Let 𝑟𝑟𝑖𝑖,1, … , 𝑟𝑟𝑖𝑖,𝐻𝐻  be the rewards 

obtained 
 𝑅𝑅𝑖𝑖 ≔ ∑ 𝛾𝛾𝑡𝑡−1𝑟𝑟𝑖𝑖,𝑡𝑡𝑡𝑡  be the observed cumulative discounted reward 

𝑉𝑉�𝜋𝜋 𝑠𝑠 = 1
𝑁𝑁
∑ 𝑅𝑅𝑖𝑖𝑖𝑖  

 This will be biased low by no more than 𝛾𝛾𝐻𝐻 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚
1−𝛾𝛾

 because we are 
truncating the infinite horizon return at horizon 𝐻𝐻, 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

1−𝛾𝛾
 is the 

cumulative discounted reward if we get reward 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 in every state 
forever. 
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Policy Evaluation (4) 
Simulator Case 
 Initialize 𝑉𝑉𝜋𝜋 𝑠𝑠 = 𝑅𝑅 𝑠𝑠,𝜋𝜋 𝑠𝑠  for all 𝑠𝑠 
 For 𝑡𝑡 = 1, … 
 𝑎𝑎 = 𝜋𝜋 𝑠𝑠  
 𝑠𝑠′~𝑃𝑃(𝑠𝑠′|𝑠𝑠, 𝑎𝑎) 
 𝑉𝑉𝜋𝜋 𝑠𝑠 ≔ 1 − 𝛼𝛼𝑡𝑡 𝑉𝑉𝜋𝜋 𝑠𝑠 + 𝛼𝛼𝑡𝑡 𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑉𝑉𝜋𝜋 𝑠𝑠′  
 𝑠𝑠 ≔ 𝑠𝑠𝑠 

 
 This is known as stochastic approximation. It will converge to the 

correct value function provided 
  ∑ 𝛼𝛼𝑡𝑡𝑡𝑡 = ∞, ∑ 𝛼𝛼𝑡𝑡2 < ∞𝑡𝑡  
and the policy 𝜋𝜋 visits every reachable state infinitely often 
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Stochastic Approximation 
 Suppose 𝑋𝑋 is a random variable with distribution 𝑃𝑃(𝑋𝑋) 
 I can estimate the expected value of 𝑋𝑋 by taking a large sample 𝑁𝑁 and computing 
 𝔼𝔼 𝑋𝑋 = 1

𝑁𝑁
∑ 𝑋𝑋𝑡𝑡𝑡𝑡  where 𝑋𝑋𝑡𝑡~𝑃𝑃(𝑋𝑋) 

 
 We can write this as the iterative algorithm 
 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚 ≔ 0 
 For 𝑡𝑡 = 1, … ,𝑁𝑁 
 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚 ≔ 1 − 𝛼𝛼𝑡𝑡 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚 + 𝛼𝛼𝑡𝑡𝑋𝑋𝑡𝑡 

 If we set 𝛼𝛼𝑡𝑡 = 1
𝑡𝑡
 then we get 

 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚1 = 𝑋𝑋1 

 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚2 = 1
2
𝑋𝑋1 + 1

2
𝑋𝑋2 

 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚3 = 2
3

𝑋𝑋1+𝑋𝑋2
2

+ 1
3
𝑋𝑋3 = 𝑋𝑋1+𝑋𝑋2+𝑋𝑋3

3
 

 and so on 

 You can verify that ∑ 1
𝑡𝑡

= ∞𝑡𝑡  but ∑ 1
𝑡𝑡2𝑡𝑡 = 𝜋𝜋2

6
< ∞ 

 [Robbins & Monro, 1951] 
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Policy Optimization 
Known MDP Case 
 Bellman Optimality Equation. The optimal policy satisfies 

𝑉𝑉∗ 𝑠𝑠 = max
𝑚𝑚

𝑅𝑅 𝑠𝑠, 𝑎𝑎 + 𝛾𝛾�𝑃𝑃 𝑠𝑠′ 𝑠𝑠, 𝑎𝑎 𝑉𝑉∗(𝑠𝑠′)
𝑠𝑠′

 

We can apply this as an assignment statement 
 For iteration = 1,…, 
 For state 𝑠𝑠 ∈ 𝑆𝑆 𝑉𝑉∗ 𝑠𝑠 : = max

𝑚𝑚
𝑅𝑅 𝑠𝑠,𝑎𝑎 + 𝛾𝛾 ∑ 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉∗(𝑠𝑠′)𝑠𝑠′  

 This will eventually converge to the optimal value function 
 This is also a form of Dynamic Programming 

 
We can recover the optimal policy by computing the action that satisfies 

the Bellman optimality equation: 

𝜋𝜋∗ 𝑠𝑠 ≔ arg max
𝑚𝑚

𝑅𝑅 𝑠𝑠,𝑎𝑎 + 𝛾𝛾�𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉∗(𝑠𝑠′)
𝑠𝑠′
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Policy Optimization (2) 
Simulation Case 
Action-Value Function  

𝑄𝑄𝜋𝜋 𝑠𝑠,𝑎𝑎 = 𝑅𝑅 𝑠𝑠,𝑎𝑎 + 𝛾𝛾�𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑄𝑄𝜋𝜋 𝑠𝑠′,𝜋𝜋 𝑠𝑠′

𝑠𝑠′
 

 Execute action 𝑎𝑎 and then following 𝜋𝜋 thereafter 
 

Action-Value version of Bellman Optimality Equation 

𝑄𝑄∗ 𝑠𝑠,𝑎𝑎 = 𝑅𝑅 𝑠𝑠,𝑎𝑎 + 𝛾𝛾�𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 max
𝑚𝑚′

𝑄𝑄∗ 𝑠𝑠′,𝑎𝑎′

𝑠𝑠′
 

The value function can be recovered as 
𝑉𝑉∗ 𝑠𝑠 = max

𝑚𝑚
𝑄𝑄∗ 𝑠𝑠,𝑎𝑎  
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Policy Optimization (3) 
Simulation Case: Q Learning 
Let 𝜋𝜋𝑚𝑚 be an “Exploration Policy” 
 Initialize 𝑄𝑄 𝑠𝑠,𝑎𝑎 ≔ 0  for all states 𝑠𝑠 and actions 𝑎𝑎 
For 𝑡𝑡 = 1, … 
 𝑎𝑎 ≔ 𝜋𝜋𝑚𝑚 𝑠𝑠  
 𝑠𝑠′ ≔ sampled from the simulator according to s′~𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎)  
 𝑄𝑄 𝑠𝑠,𝑎𝑎 ≔ 1 − 𝛼𝛼𝑡𝑡 𝑄𝑄 𝑠𝑠,𝑎𝑎 + 𝛼𝛼𝑡𝑡 𝑅𝑅 𝑠𝑠, 𝑎𝑎 + 𝛾𝛾max𝑚𝑚′ 𝑄𝑄 𝑠𝑠′, 𝑎𝑎′  

 

Again this is a stochastic approximation version of Value 
Iteration over the Action Value Function 
𝜋𝜋𝑚𝑚 must try every action 𝑎𝑎 in every state 𝑠𝑠 infinitely often to 

guarantee convergence 
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Generic Exploration Policies 
Epsilon-Greedy 
With probability 1 − 𝜖𝜖, select 𝑎𝑎 = arg max

𝑚𝑚′
𝑄𝑄 𝑠𝑠,𝑎𝑎′ . This is 

the “greedy” action 
With probability 𝜖𝜖, select 𝑎𝑎 ∈ 𝐴𝐴 uniformly at random 
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Generic Exploration Policies (2) 
Boltzmann Exploration 
Select 𝑎𝑎 according to the Boltzmann distribution 

𝑃𝑃 𝑎𝑎 =
exp𝑄𝑄 𝑠𝑠,𝑚𝑚

𝜏𝜏

∑ exp𝑄𝑄 𝑠𝑠,𝑚𝑚′

𝜏𝜏𝑚𝑚′
 

 
Here, 𝜏𝜏 is the temperature parameter. As 𝜏𝜏 → 0, this 

approaches the greedy distribution that assigns probability 
1 to arg max

𝑚𝑚′
𝑄𝑄 𝑠𝑠,𝑎𝑎′  

This is called the Softmax Distribution 
Typically 𝜏𝜏 is started high and gradually decreased toward 

0 
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Reinforcement Learning with 
Function Approximation 

All of the methods discussed so far assume we can store 𝑉𝑉 
(size |𝑆𝑆|) or 𝑄𝑄 (size 𝑆𝑆 × 𝐴𝐴 ) 
This is not always feasible 

 
The research community explored using neural networks 

(and other function approximators) to represent 𝑄𝑄 𝑠𝑠,𝑎𝑎 =
𝑄𝑄 𝑠𝑠,𝑎𝑎; 𝜃𝜃 , where 𝜃𝜃 is the set of parameters of a neural 
network 
 
This often fails badly 
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Policy Search Methods 
Let 𝜋𝜋 𝑠𝑠;𝜃𝜃  be a parameterized class of policies 
 
Goal: Find 𝜃𝜃 to maximize 
𝐽𝐽 𝜃𝜃 = 𝔼𝔼 ∑ 𝛾𝛾𝑡𝑡𝑟𝑟𝑡𝑡∞

𝑡𝑡=0 𝑎𝑎𝑡𝑡 = 𝜋𝜋 𝑠𝑠𝑡𝑡;𝜃𝜃  
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Sequential Model-Based Optimization 
(aka “Bayesian Optimization”) 

Initialize a model 𝐽𝐽 𝜃𝜃,𝜔𝜔  of the shape of the 𝐽𝐽(𝜃𝜃) 
“landscape” 
This is typically a Gaussian process model with parameters 
𝜔𝜔 

Repeat until no further improvement: 
Select a 𝜃𝜃 to evaluate using 𝐽𝐽 𝜃𝜃,𝜔𝜔 , according to an 

“acquisition function” 
 Typically “Expected Improvement” 

Estimate 𝐽𝐽(𝜃𝜃) from one or more Monte Carlo trials 
Update 𝐽𝐽(𝜃𝜃,𝜔𝜔) 
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Visualization (from Ryan Adams) 
Goal: minimize 𝑓𝑓(𝑥𝑥). 
Blue dot: 𝑥𝑥 value to sample next 

33 Data Science Africa 2018 



34 Data Science Africa 2018 



35 Data Science Africa 2018 



36 Data Science Africa 2018 



37 Data Science Africa 2018 



38 Data Science Africa 2018 



39 Data Science Africa 2018 



Other Direct Policy Search 
Methods 

CMA-ES: Covariance Matrix Adaptation-Evolution Strategies 
SMAC: Random Forest-based Method 

 
Note that none of these require that 𝜋𝜋 𝑠𝑠; 𝜃𝜃  be differentiable 

with respect to 𝜃𝜃 

40 Data Science Africa 2018 



Policy Gradient Methods 
Let 𝑃𝑃 𝑎𝑎 𝑠𝑠 = 𝜋𝜋 𝑠𝑠,𝑎𝑎;𝜃𝜃  be a differentiable stochastic policy 

(e.g. a neural network with softmax output layer) 
We can use Monte Carlo trials to estimate the gradient 

 
𝛻𝛻𝜃𝜃𝐽𝐽 𝜃𝜃  

 

We can then take a step 
𝜃𝜃 ≔ 𝜃𝜃 + 𝜂𝜂𝛻𝛻𝜃𝜃𝐽𝐽 𝜃𝜃  

in the direction of the gradient to improve the policy 
 
We do this until the gradient is zero, which means we have 

reached a (local) maximum 
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Policy Gradient Methods 
 Policy Gradient Methods 
 Let 𝑃𝑃 𝑎𝑎 𝑠𝑠 = 𝜋𝜋 𝑠𝑠, 𝑎𝑎; 𝜃𝜃  be a differentiable stochastic policy (e.g. a neural 

network with softmax output layer) 
 

We can obtain Monte Carlo estimates of the gradient 𝛻𝛻𝜃𝜃𝐽𝐽(𝜃𝜃) as follows: 
 Let 𝐻𝐻 be a chosen “horizon time” 
 Starting in state 𝑠𝑠𝑡𝑡, select actions 𝑎𝑎𝑡𝑡~𝜋𝜋(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡;𝜃𝜃) to produce a trajectory 
𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡, 𝑠𝑠𝑡𝑡+1, 𝑎𝑎𝑡𝑡+1, 𝑟𝑟𝑡𝑡+1, … , 𝑠𝑠𝑡𝑡+𝐻𝐻−1, 𝑎𝑎𝑡𝑡+𝐻𝐻−1, 𝑟𝑟𝑡𝑡+𝐻𝐻−1, 𝑠𝑠𝑡𝑡+𝐻𝐻  

 Compute the observed cumulative discounted return along this trajectory: 
 𝑅𝑅𝐻𝐻 = 𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑟𝑟𝑡𝑡+1 + ⋯+ 𝛾𝛾𝐻𝐻−1𝑟𝑟𝑡𝑡+𝐻𝐻−1 
 𝛻𝛻𝜃𝜃𝐽𝐽 𝜃𝜃 ≈ 𝛻𝛻𝜃𝜃 log𝜋𝜋 𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡 𝑅𝑅𝐻𝐻 
 𝜃𝜃 ≔ 𝜃𝜃 + 𝜂𝜂𝛻𝛻𝜃𝜃 log𝜋𝜋 𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡 𝑅𝑅𝐻𝐻 using learning rate 𝜂𝜂 
 This is called 𝐻𝐻-step REINFORCE 
 Unfortunately, the gradient can be very noisy, so 𝜂𝜂 must  be very small 
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Actor-Critic Method 
 Stabilizes REINFORCE by including the value function 
 Historically,  𝜋𝜋 𝑠𝑠, 𝑎𝑎;𝜃𝜃  was called “The Actor” 
 and 𝑉𝑉𝜃𝜃 𝑠𝑠;𝜔𝜔  was called “The Critic” (implemented as a second neural network) 

 
𝛻𝛻𝜃𝜃𝐽𝐽 𝜃𝜃 ≈ 𝛻𝛻𝜃𝜃 log𝜋𝜋 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 𝑅𝑅𝐻𝐻 − 𝑉𝑉𝜃𝜃 𝑠𝑠𝑡𝑡;𝜔𝜔  

 
 𝑉𝑉𝜃𝜃 is an instance of a “baseline” method. These are standard methods 

employed to reduce the variance of Monte Carlo estimates 
 Actor Critic methods work well even when the value function is quite bad 
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State of the Art: A3C 
 𝑡𝑡 ≔ 1;𝑇𝑇 ≔ 0. Initialize 𝜃𝜃 and 𝜔𝜔 
 repeat 
 reset gradients: 𝑑𝑑𝜃𝜃 ≔ 0;𝑑𝑑𝜔𝜔 ≔ 0 
 create “fast” copies: 𝜃𝜃′ ≔ 𝜃𝜃;𝜔𝜔′ ≔ 𝜔𝜔 
 𝑡𝑡𝑠𝑠𝑡𝑡𝑚𝑚𝑠𝑠𝑡𝑡 ≔ 𝑡𝑡 
 repeat (generate trajectory of length 𝐻𝐻) 
 perform 𝑎𝑎𝑡𝑡 ~ 𝜋𝜋(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡;𝜃𝜃′) receive 𝑟𝑟𝑡𝑡 and observe 𝑠𝑠𝑡𝑡+1 
 𝑡𝑡 ≔ 𝑡𝑡 + 1;𝑇𝑇 ≔ 𝑇𝑇 + 1 
 until 𝑡𝑡 − 𝑡𝑡𝑠𝑠𝑡𝑡𝑚𝑚𝑠𝑠𝑡𝑡 == 𝐻𝐻 
 𝑅𝑅 ≔ 𝑉𝑉 𝑠𝑠𝑡𝑡;𝜔𝜔′  
 for 𝑖𝑖 from 𝑡𝑡 − 1 downto 𝑡𝑡𝑠𝑠𝑡𝑡𝑚𝑚𝑠𝑠𝑡𝑡 do 
 𝑅𝑅 ≔ 𝑟𝑟𝑖𝑖 + 𝛾𝛾𝑅𝑅 
 𝑑𝑑𝜃𝜃 ≔ 𝑑𝑑𝜃𝜃 + 𝛻𝛻𝜃𝜃′ log𝜋𝜋 𝑠𝑠𝑖𝑖 ,𝑎𝑎𝑖𝑖;𝜃𝜃′ 𝑅𝑅 − 𝑉𝑉 𝑠𝑠𝑖𝑖;𝜔𝜔′  
 𝑑𝑑𝜔𝜔 ≔ 𝑑𝑑𝜔𝜔 + 𝜕𝜕 𝑅𝑅 − 𝑉𝑉 𝑠𝑠𝑖𝑖;𝜔𝜔′ 2/𝜕𝜕𝜔𝜔𝑠 
 𝜃𝜃 ≔ 𝜃𝜃 + 𝜂𝜂𝑑𝑑𝜃𝜃;  𝜔𝜔 ≔ 𝜔𝜔 + 𝜂𝜂𝑑𝑑𝜔𝜔 update “slow” parameters 

 until 𝑇𝑇 > 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 
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Distributed, Asynchronous 
Updates 

Execute multiple copies running in parallel threads 
Shared global variables: 𝜃𝜃,𝜔𝜔,𝑇𝑇 
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A3C Discussion 
The gradient updates within a single trajectory are highly 

correlated 
Combining multiple parallel threads gives a more 

independent (and therefore, more stable) gradient estimate 
 
Both the policy and the value function are trained via gradient 

ascent steps 
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Experiments on Atari Gams 
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Space Invaders 
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Tamarisk Study 
 Small network with one “slot” per 

edge 
 Budget: 2 edges treated per time 

step 
 For each 𝑠𝑠,𝑎𝑎 , we invoked the 

simulator thousands of times to 
estimate 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 . We used a 
Clopper-Pearson confidence 
interval on each outcome 
probability and sampled until the 
width of the confidence interval 
was less than 0.01 
 Then we applied value iteration to 

compute 𝜋𝜋∗ 
 Then we manually analyzed the 

resulting policy 
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Tamarisk Results 
 Both (eradicate + plant native) action was performed primarily in the 

midstream reaches 
 Prevents invader from establishing there 
 Provides native seeds for downstream reach 
 It is not actually a barrier 

 Planting native trees in the upstream reaches was sometimes chosen. 
 Serves as a source of native seeds 
 Upstream propagation of invasive seeds is rare, so it does not have much 

preventative effect 
 If there is no upstream propagation at all, then the optimal policy uses 

eradication starting upstream and sweeping downstream 
 Eradication is permanent under these conditions 

 If there are exogenous arrivals, then eradication by itself is weak, 
because an exogenous invasive seed can undo the eradication easily 
 Optimal policy focuses on planting natives everywhere, starting upstream 

 In general, the optimal policy is quite complex, even for this simple river 
system 
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Summary 
Many ecosystem management problems can be 
formulated as Markov Decision Problems 
Known MDP (known 𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′)): use value iteration 
to compute the optimal policy 
Simulator MDP or real world MDP 
 If the state and action spaces are small enough, use Q 

learning with a tabular representation for 𝑄𝑄(𝑠𝑠,𝑎𝑎) 
Else perform policy search 
 Policy Search via Bayesian Optimization 
 Policy Search via Policy Gradient Methods 
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