Introduction to Density Estimation and Anomaly Detection

Tom Dietterich

6/2/2018

Outline

Definition and Motivations Density Estimation Parametric Density Estimation Mixture Models Kernel Density Estimation Neural Density Estimation Anomaly Detection Distance-based methods Isolation Forest and LODA RPAD theory

What is Density Estimation?

- Given a data set $\{x_1, \dots, x_N\}$ where $x_i \in \mathbb{R}^d$
- •We assume the data have been drawn iid from an unknown probability density: $x_i \sim P(x_i)$
- Goal: Estimate P
- Requirements $P(x) \ge 0 \ \forall x \in \mathbb{R}^d$ $\int_{x \in \mathbb{R}^d} P(x) dx = 1$

How to Evaluate a Density Estimator

Suppose I have computed a density estimator \hat{P} for *P*. How can I evaluate it?

A good density estimator should assign high density where P is large and low density where P is low

Standard metric: the Log Likelihood

$$\sum_{i} \log \hat{P}(x_i)$$

Important: Holdout Likelihood

- If we use our training data to construct \hat{P} , we cannot use that same data to evaluate \hat{P} .
- Solution:
 - Given our initial data $S = x_1, \dots, x_N$
 - Randomly split into S_{train} and S_{test}
 - Compute \widehat{P} using S_{train}
 - Evaluate \hat{P} using S_{test}

$$\sum_{x_i \in S_{test}} \log \hat{P}(x_i)$$

Reminder: Densities, Probabilities, Events

A density µ is a "measure" over some space X
A density can be > 1 but must integrate to 1
An "event" is a subspace (region) E ⊆ X
The probability of an event is obtained by integration $P(E) = \int_{x \in E} \mu(x) dx$

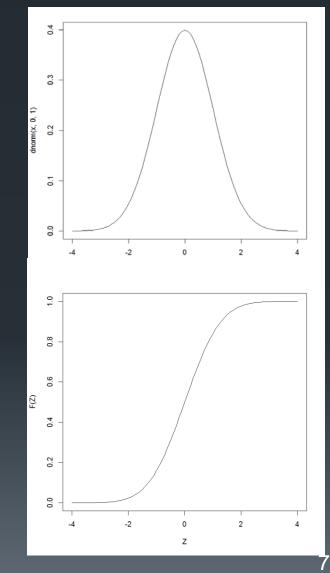
Example from the ipython notebook

Normal probability density $P(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left(-\frac{1}{2} \left[\frac{x - \mu}{\sigma}\right]^2\right)$

 Normal cumulative distribution function

• $F(z; \mu, \sigma)$ = probability of the event $[-\infty, z]$

•
$$F(z; \mu, \sigma) = \int_{\infty}^{z} P(x; \mu, \sigma) dx$$



Why Estimate Densities?

Anomaly DetectionClassification

If we can learn high-dimensional densities, then all machine learning problems can be solved using probabilistic methods

Anomaly Detection

- Anomaly: A data point generated by a different process than the process that generates the normal data points
 - Example: Fraud Detection
 - Normal points: Legitimate financial transactions
 - Anomaly points: Fraudulent transactions
 - Example: Sensor Data
 - Normal points: Correct data values
 - Anomaly points: Bad values (broken sensors)

Anomaly Score using Surprise

In information theory, the surprise of an observation x, S(x) is defined as

$$S(x) = -\log P(x)$$

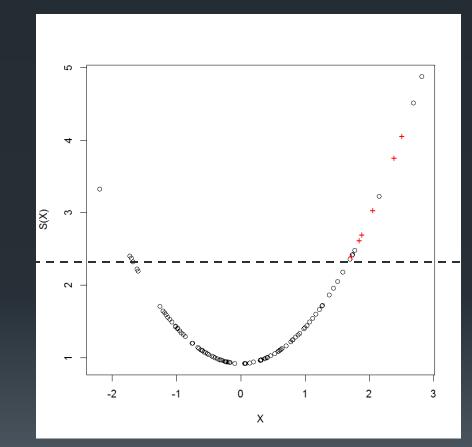
Properties:

- If P(x) = 0, then $S(x) = +\infty$
- If P(x) = 1, then S(x) = 0

 Surprise is only defined for events, but we often use it for densities when we are interested on small values of P(x)

Example

- Nominal distribution: Normal(0,1)
- Anomaly distribution: Normal(3,1)
- Generate 100 nominals and 10 anomalies
- Plot anomaly score as a function of x
- Setting a threshold at 2.39 will detect all anomalies and also have 8 false alarms

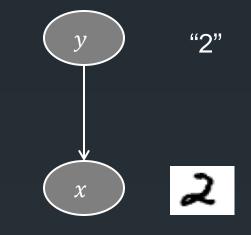


Classification

- Class-Conditional Models
- Goal: Predict y from x
- Model the process that creates the data:
 - $y \sim P(y)$ discrete
 - $x \sim P(x|y) = N(x|\mu_y, \Sigma_y)$ Gaussian
- "Conditional Density Estimation"
- Classification via probabilistic inference

• $P(y|x) = \frac{P(y)N(x|\mu_y,\Sigma_y)}{\sum_{y'} P(y')N(x|\mu_{y'}\Sigma_{y'})}$

Which class y best explains the observed x?
Challenge: P(x|y) is usually very complex and difficult to model.



Outline

Definition and Motivations Density Estimation Parametric Density Estimation Mixture Models Kernel Density Estimation Neural Density Estimation Anomaly Detection Distance-based methods Isolation Forest and LODA RPAD theory

Parametric Density Estimation

•Assume $P(x) = Normal(x|\mu, \Sigma)$ is the multivariate Gaussian distribution

$$P(x) = \frac{1}{\sqrt{(2\pi)^d \det(\Sigma)}} \exp{-\frac{1}{2}(x-\mu)^\top \Sigma^{-1}(x-\mu)}$$

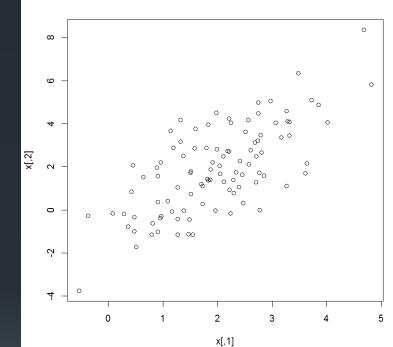
Fit by computing moments:

$$\hat{\mu} = \frac{1}{N} \sum_{i} x_{i}$$
$$\hat{\Sigma} = \frac{1}{N} \sum_{i} (x_{i} - \hat{\mu}) (x_{i} - \hat{\mu})^{\mathsf{T}}$$

Example

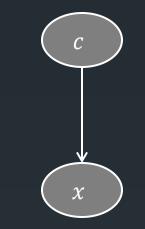
• Sample 100 points from multivariate Gaussian with $\mu = (2,2)$ and $\Sigma = \begin{bmatrix} 1 & 1.5 \\ 1.5 & 4 \end{bmatrix}$ • Estimates: • $\hat{\mu} = (1.968731, 1.894511)$

 $\widehat{\Sigma} = \begin{bmatrix} 1.081423 & 1.462467 \\ 1.462467 & 4.000821 \end{bmatrix}$



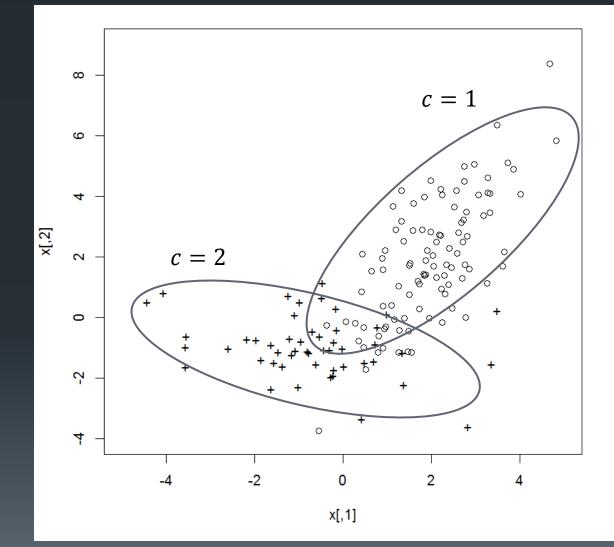
Mixture Models

- $P(x) = \sum_{c} P(c) P(x|c)$
- c indexes the mixture component
- Each mixture component has its own conditional density P(x|c)



Mixture Models

Example
P(c = 1) = 2/3
P(c = 2) = 1/3
P(x|c = 1) "0"
P(x|c = 2) "+"



Fitting Mixture Models: Expectation Maximization

- Choose the number of mixture components K
- Create a matrix *R* of dimension $K \times N$. This will represent $P(c_i = k | x_i) = R[k, i]$
 - This is called the "membership probability". The probability that data point *i* was generated by component *k*
- ■Randomly initialize $R[k,i] \in (0,1)$ subject to the constraint that $\sum_k R[k,i] = 1$

EM Algorithm Main Loop

• *M* step: Maximum likelihood estimation of the model parameters using the data x_1, \ldots, x_N and *R*

•
$$\hat{P}(c = k) \coloneqq \frac{1}{N} \sum_{i} P(c_{i} = k | x_{i})$$

• $\hat{\mu}_{k} \coloneqq \frac{1}{N \hat{P}(c=k)} \sum_{i} P(c_{i} = k | x_{i}) x_{i}$
• $\hat{\Sigma}_{k} \coloneqq \frac{1}{N \hat{P}(c=k)} \sum_{i} P(c_{i} = k | x_{i}) [x_{i} x_{i}^{\mathsf{T}}]$
• E step: Re-estimate R
• $R[k, i] \coloneqq \hat{P}(c = k) \operatorname{Normal}(x_{i} | \hat{\mu}_{k}, \hat{\Sigma}_{k})$
• $R[k, i] \coloneqq R[k, i] / \sum_{k} R[k, i]$

Results on Our Example [R mclust package]

Estimates

mixing proportions

(0.649, 0.351)

means:

- **(2.014, 1.967)**
- **■** (-0.631, -0.957)

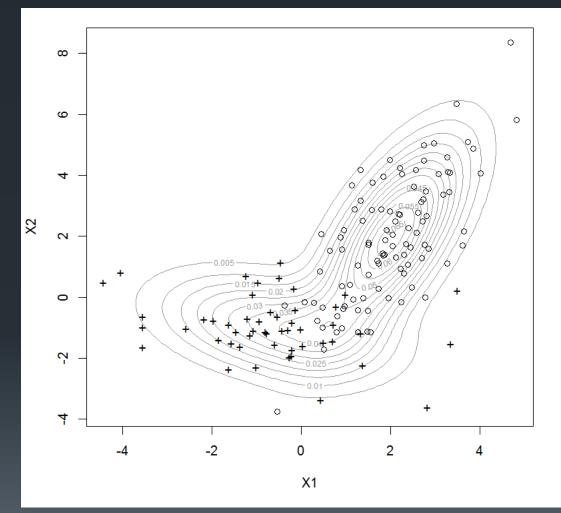
True values

Mixing proportions:

(0.667, 0.333)

Means:

- **(2.000,2.000)**
- (-1.000, -1.000)



Mixture Model Summary

- Can fit very complex distributions
- EM is a local search algorithm
 - Different random initializations can find different fitted models
 - There are some new moment-based methods that find the global optimum
- Difficult to choose the number of mixture components
 There are many heuristics for this

Kernel Density Estimation

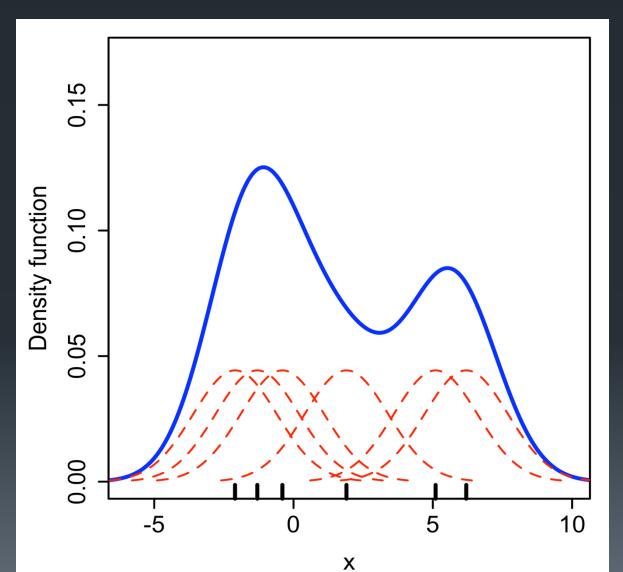
Define a mixture model with one mixture component for each data point

•
$$\hat{P}(x) = \frac{1}{N} \sum_{i=1}^{N} K(x - x_i, \sigma^2)$$

• Often use a Gaussian Kernel $K(x, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{x^2}{2\sigma^2}\right]$

• Often use a fixed scale σ^2 . The scale is also called the "bandwidth"

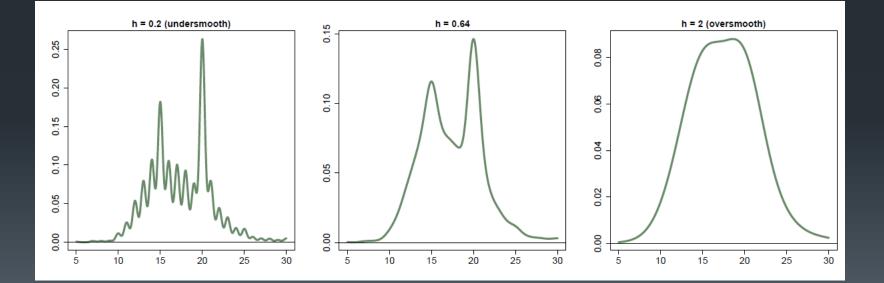
One-Dimensional Example



Design Decisions

Choice of Kernel: generally not important as long as it is local

Choice of bandwidth is very important



Challenges

KDE in high dimensions suffers from the "Curse of Dimensionality"

The amount of data required to achieve a desired level of accuracy scales exponentially with the dimensionality *d* of the problem: $\exp \frac{d+4}{2}$

Factoring the Joint Density into Conditional Distributions

Let $x = (x_1, ..., x_d)$ be a vector of random variables. We wish to model the joint distribution P(x).

- By the chain rule of probability, we can write this as $P(x) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2) \cdots P(x_d|x_1, \dots, x_{d-1})$
- We can model $P(x_1)$ using any 1-D method (e.g., KDE).
- We can model each conditional distribution using regression methods

Linear Regression = Conditional Density Estimation

Let $x = (x_1, ..., x_J)$ be the predictor variables and y be the response variable

- Standard least-squares linear regression models the conditional probability distribution was
- $P(y|x) \sim Normal(y; \mu(x), \sigma^2)$
 - where $\mu(x) = \beta_0 + \beta_1 \overline{x_1 + \dots + \beta_J x_J}$
 - and σ^2 is a fitted constant

Neural networks trained to minimize squared error model the mean as $\mu(x) = NNet(x; W)$, where W are the weights of the neural network

Deep Neural Networks for Density Estimation

- Masked Auto-Regressive Flow (Papamarkarios, 2017)Apply the chain rule of probability
- $P(x_j | x_{1:j-1}) = \text{Normal}(x_j; \mu_j, (\exp \alpha_j)^2)$ where • $\mu_j = f_j(x_{1:j-1})$ and $\alpha_j = g_j(x_{1:j-1})$ are implemented by neural networks
- Re-parameterization trick for sampling $x_j \sim P(x_j | x_{1:j-1})$
 - Let $u_j \sim Normal(0,1)$
 - $x_j = u_j \exp \alpha_j + \mu_j$

(rescale by the standard deviation and displace by the mean)

Transformation View

- Equivalent model: u~Normal(u; 0, I) is a vector of J standard normal random variates
- $\mathbf{x} = F(\mathbf{u})$ transforms those random variates into the observed data
- To compute $P(\mathbf{x})$ we can invert this function and evaluate Normal $(F^{-1}(x); 0, I)$ "almost"
- $P(x) = \text{Normal}(F^{-1}(x); 0, I) \left| \det \left[\frac{\partial F^{-1}(x)}{\partial x} \right] \right|$

This ensures that P integrates to 1

Derivative of F^{-1} is Simple

 Because of the "triangular" structure created by the chain rule,

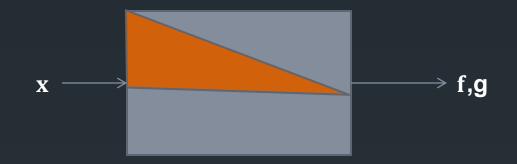
$$\left|\det\left[\frac{\partial F^{-1}(x)}{\partial x}\right]\right| = \exp\left(-\sum_{j} \alpha_{j}\right)$$

F is Easy to Invert

$$u_j = (x_j - \mu_j) \exp(-\alpha_j)$$

where $\mu_j = f_j(x_{1:j-1})$ and $\alpha_j = g_j(x_{1:j-1})$

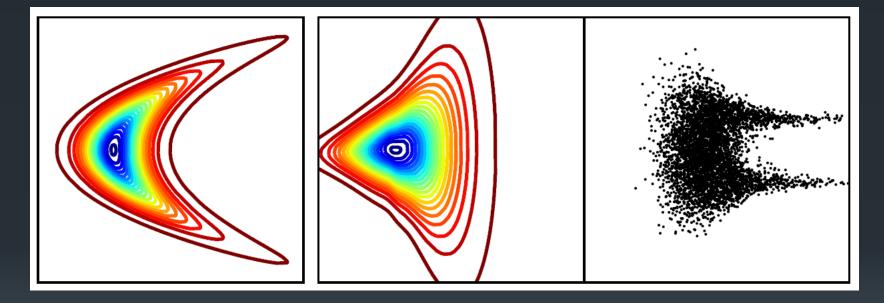
Masked Auto-Regressive Flow



•"mask" ensures that f_j and g_j only depend on $x_{1:j-1}$

Stacking MAFs

One MAF network is often not sufficient

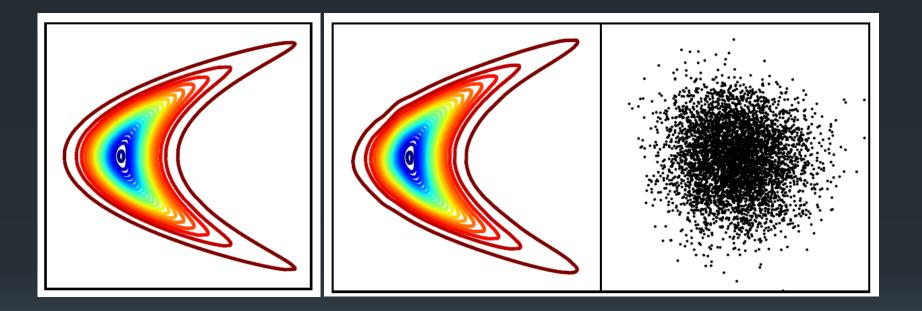


True Density

Fitted Density from single MAF network

Distribution of the **u** values

Stack MAFs until the **u** values are Normal(0,I)



True Density

Fitted Density from stack of 5 MAFs

Distribution of the **u** values

Test Set Log Likelihood

	POWER	GAS	HEPMASS	MINIBOONE	BSDS300
Gaussian	-7.74 ± 0.02	-3.58 ± 0.75	-27.93 ± 0.02	-37.24 ± 1.07	96.67 ± 0.25
MADE MADE MoG	$\begin{array}{c} -3.08 \pm 0.03 \\ 0.40 \pm 0.01 \end{array}$	3.56 ± 0.04 8.47 ± 0.02	$\begin{array}{c} -20.98 \pm 0.02 \\ -15.15 \pm 0.02 \end{array}$	$-15.59 \pm 0.50 \\ -12.27 \pm 0.47$	$\begin{array}{c} 148.85 \pm 0.28 \\ 153.71 \pm 0.28 \end{array}$
Real NVP (5) Real NVP (10)	$\begin{array}{c} -0.02 \pm 0.01 \\ 0.17 \pm 0.01 \end{array}$	4.78 ± 1.80 8.33 ± 0.14	$\begin{array}{c} -19.62 \pm 0.02 \\ -18.71 \pm 0.02 \end{array}$	$\begin{array}{c} -13.55 \pm 0.49 \\ -13.84 \pm 0.52 \end{array}$	$\begin{array}{c} 152.97 \pm 0.28 \\ 153.28 \pm 1.78 \end{array}$
MAF (5) MAF (10) MAF MoG (5)	$\begin{array}{c} 0.14 \pm 0.01 \\ 0.24 \pm 0.01 \\ 0.30 \pm 0.01 \end{array}$	$\begin{array}{c} 9.07 \pm 0.02 \\ 10.08 \pm 0.02 \\ 9.59 \pm 0.02 \end{array}$	$-17.70 \pm 0.02 \\ -17.73 \pm 0.02 \\ -17.39 \pm 0.02$	$-11.75 \pm 0.44 \\ -12.24 \pm 0.45 \\ -11.68 \pm 0.44$	$\begin{array}{c} 155.69 \pm 0.28 \\ 154.93 \pm 0.28 \\ \textbf{156.36} \pm \textbf{0.28} \end{array}$

Outline

Definition and Motivations

Density Estimation

Parametric Density Estimation

Mixture Models

Kernel Density Estimation

Neural Density Estimation

Anomaly Detection

Distance-based methods

Isolation Forest and LODA

RPAD theory

Part 2: Other Anomaly Detection Approaches

- Do we need accurate density estimates to do anomaly detection?
- Maybe not
 - Rank points proportional to $-\log P(x)$
 - Detect low-probability outliers

Distance-Based Anomaly Detection

- Assume a distance metric ||x y|| between any two data points x and y
- A(x) = anomaly score = distance to k-th nearest data point
- Points in empty regions of the input space are likely to be anomalies

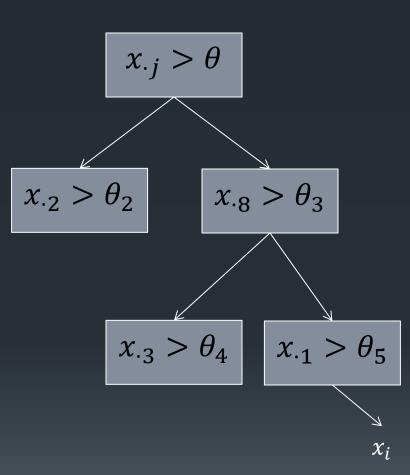
There are many refinements of this basic idea
 Learned distance metrics can be helpful

Isolation Forest [Liu, Ting, Zhou, 2011]

- Construct a fully random binary tree
 - choose attribute j at random
 - choose splitting threshold θ uniformly from $[\min(x_{.j}), \max(x_{.j})]$
 - until every data point is in its own leaf
 - let $d(x_i)$ be the depth of point x_i
- repeat 100 times
 - let $\overline{d}(x_i)$ be the average depth of x_i

• $A(x_i) = 2^{-\left(\frac{\overline{d}(x_i)}{r(x_i)}\right)}$

• $r(x_i)$ is the expected depth

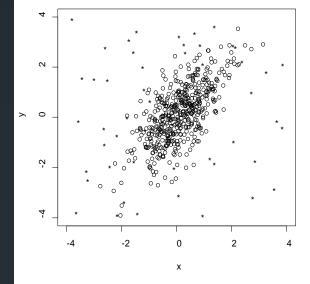


LODA: Lightweight Online Detector of Anomalies [Pevny, 2016]

Π₁, ..., Π_M set of M
 sparse random
 projections

• f_1, \ldots, f_M corresponding 1dimensional density estimators

 $S(x) = \frac{1}{M} \sum_{m} -\log f_{m}(x)$ average "surprise"

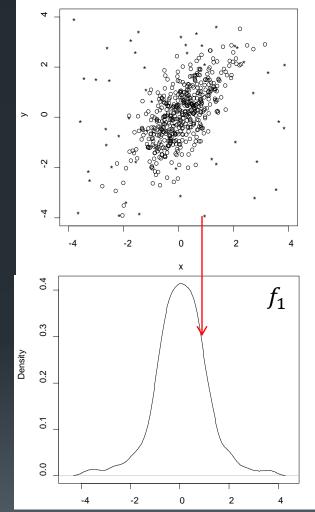


LODA: Lightweight Online Detector of Anomalies [Pevny, 2016]

• Π_1, \dots, Π_M set of M sparse random projections

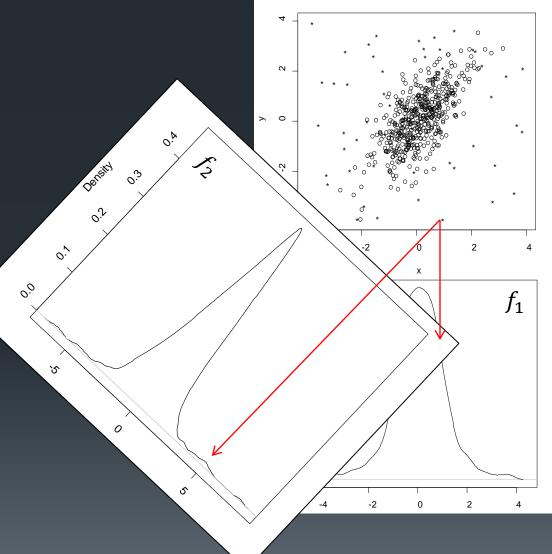
• f_1, \ldots, f_M corresponding 1dimensional density estimators

 $S(x) = \frac{1}{M} \sum_{m} -\log f_{m}(x)$ average "surprise"



LODA: Lightweight Online Detector of Anomalies [Pevny, 2016]

- Π_1, \dots, Π_M set of Msparse random projections
- f_1, \ldots, f_M corresponding 1dimensional density estimators
- $S(x) = \frac{1}{M} \sum_{m} -\log f_{m}(x)$ average "surprise"



Benchmarking Study [Andrew Emmott]

Most AD papers only evaluate on a few datasets
Often proprietary or very easy (e.g., KDD 1999)
Research community needs a large and growing collection of public anomaly benchmarks

[Emmott, Das, Dietterich, Fern, Wong, 2013; KDD ODD-2013] [Emmott, Das, Dietterich, Fern, Wong. 2016; arXiv 1503.01158v2]

Benchmarking Methodology

- Select 19 data sets from UC Irvine repository
- Choose one or more classes to be "anomalies"; the rest are "nominals"
- Manipulate
 - Relative frequency
 - Point difficulty
 - Irrelevant features
 - Clusteredness
- 20 replicates of each configurationResult: 25,685 Benchmark Datasets

Algorithms

Density-Based Approaches

- RKDE: Robust Kernel Density Estimation (Kim & Scott, 2008)
- EGMM: Ensemble Gaussian Mixture Model (our group)

Quantile-Based Methods

- OCSVM: One-class SVM (Schoelkopf, et al., 1999)
- SVDD: Support Vector Data Description (Tax & Duin, 2004)
- Neighbor-Based Methods
 - LOF: Local Outlier Factor (Breunig, et al., 2000)
 - ABOD: kNN Angle-Based Outlier Detector (Kriegel, et al., 2008)
- Projection-Based Methods
 - IFOR: Isolation Forest (Liu, et al., 2008)
 - LODA: Lightweight Online Detector of Anomalies (Pevny, 2016)

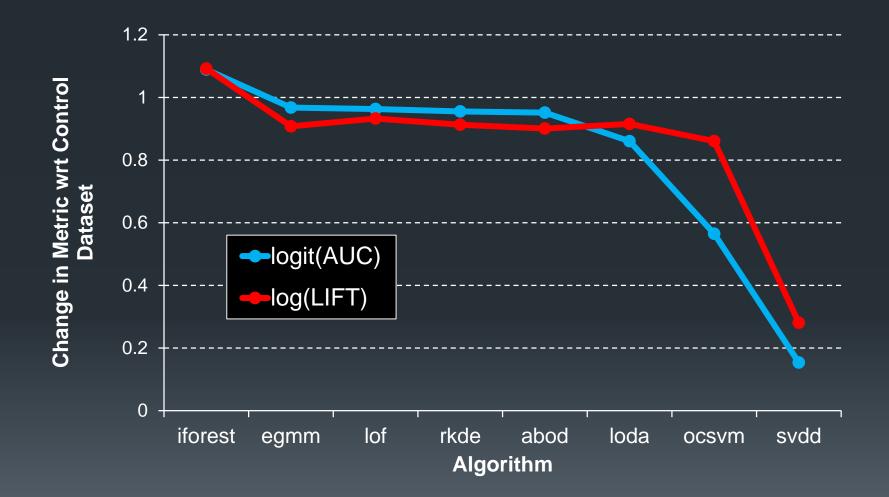
Analysis

Linear ANOVA

- $metric \sim rf + pd + cl + ir + mset + algo$
 - rf: relative frequency
 - pd: point difficulty
 - cl: normalized clusteredness
 - ir: irrelevant features
 - mset: "Mother" set
 - algo: anomaly detection algorithm
- Validate the effect of each factor

 Assess the algo effect while controlling for all other factors

Algorithm Comparison



How Much Training Data is Needed?

- We looked at learning curves for anomaly detection
- On most benchmarks, we only need a few thousand points to get good detection rates
- That is certainly better than $exp \frac{d+4}{2}$ What is going on?

Rare Pattern Anomaly Detection [Siddiqui, et al.; UAI 2016]

- A pattern $h: \mathfrak{R}^d \to \{0,1\}$ is an indicator function for a measurable region in the input space
 - Examples:
 - Half planes
 - Axis-parallel hyper-rectangles in $[-1,1]^d$

A pattern space \mathcal{H} is a set of patterns (countable or uncountable)

Rare and Common Patterns

Let μ be a fixed measure over \Re^d

Typical choices:

- uniform over $[-1, +1]^d$
- standard Gaussian over \Re^d
- $\mu(h)$ is the measure of the pattern defined by h
- Let p be the "nominal" probability density defined on R^d (or on some subset)
- $\mathbf{P}(h)$ is the probability of pattern h

• A pattern h is τ -rare if

$$f(h) = \frac{p(h)}{\mu(h)} \le \tau$$

• Otherwise it is τ -common

Rare and Common Points

- A point x is τ -rare if there exists a τ -rare h such that h(x) = 1
- Otherwise a point is τ -common

Goal: An anomaly detection algorithm should output all τ -rare points and not output any τ -common points

PAC-RPAD

- Algorithm \mathcal{A} is PAC-RPAD for

- pattern space \mathcal{H} ,
- measure μ ,
- parameters τ, ϵ, δ

if for any probability density p and any τ , \mathcal{A} draws a sample from pand with probability $1 - \delta$ detects all τ -rare points and rejects all $(\tau + \epsilon)$ -common points in the sample

- ϵ allows the algorithm some margin for error
- If a point is between τ -rare and $(\tau + \epsilon)$ -common, the algorithm can treat it arbitrarily
- Running time polynomial in $\frac{1}{\epsilon}$, $\frac{1}{\delta}$, and $\frac{1}{\tau}$, and some measure of the complexity of \mathcal{H}

RAREPATTERNDETECT

Draw a sample of size $N(\epsilon, \delta)$ from p

Let $\hat{p}(h)$ be the fraction of sample points that satisfy h

Let $\hat{f}(h) = \frac{\hat{p}(h)}{\mu(h)}$ be the estimated rareness of hA query point x_q is declared to be an anomaly if there exists a pattern $h \in \mathcal{H}$ such that $h(x_q) = 1$ and $\hat{f}(h) \leq \tau$.

Results

 Theorem 1: For any finite pattern space *H*, RAREPATTERNDETECT is PAC-RPAD with sample complexity

$$N(\epsilon, \delta) = O\left(\frac{1}{\epsilon^2}\left(\log|\mathcal{H}| + \log\frac{1}{\delta}\right)\right)$$

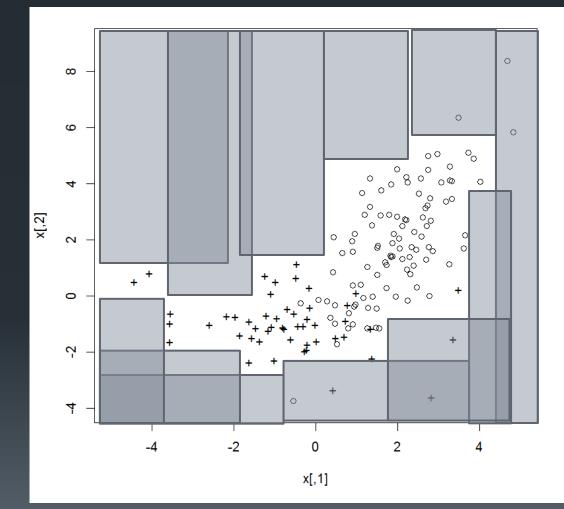
Theorem 2: For any pattern space \mathcal{H} with finite VC dimension $\mathcal{V}_{\mathcal{H}}$, RAREPATTERNDETECT is PAC-RPAD with sample complexity

$$N(\epsilon, \delta) = O\left(\frac{1}{\epsilon^2} \left(\mathcal{V}_{\mathcal{H}} \log \frac{1}{\epsilon^2} + \log \frac{1}{\delta}\right)\right)$$

Intuition: Surround the data with rare patterns

If a query point hits one of the rare patterns, declare it to be an anomaly

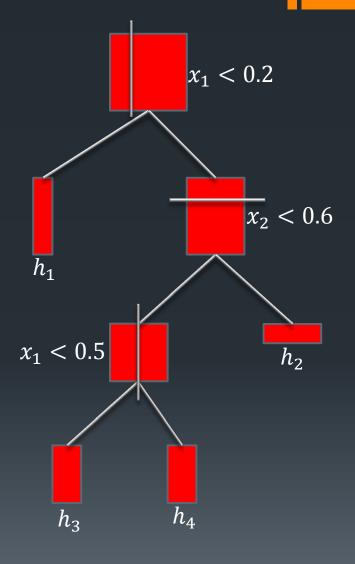
We only estimate the probability of each pattern, not the full density



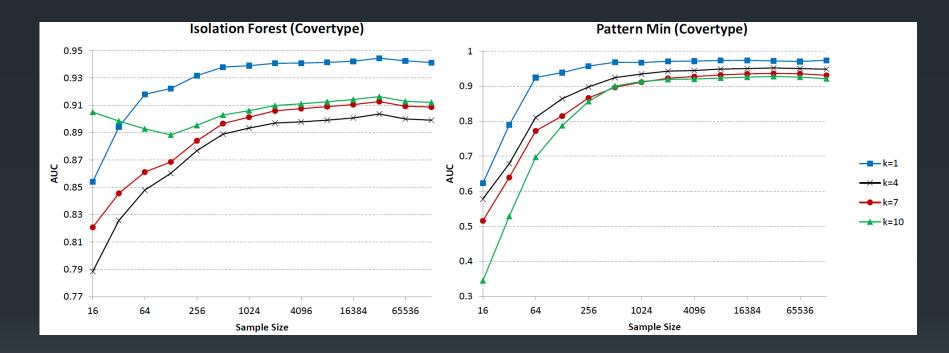
Isolation RPAD

Grow an isolation forest
Each tree is only grown to depth k
Each leaf defines a pattern h
µ is the volume (Lebesgue measure)
Compute f̂(h) for each leaf
Details
Grow the tree using one sample

Estimate *f̂* using a second sample
Score query point(s)

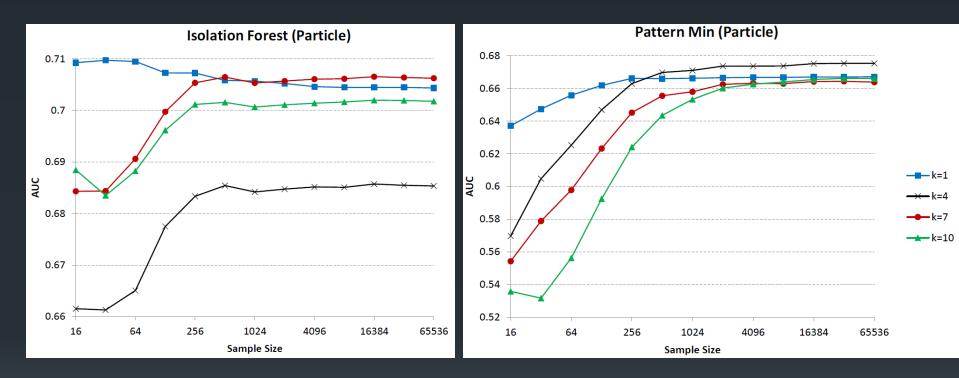


Results: Covertype



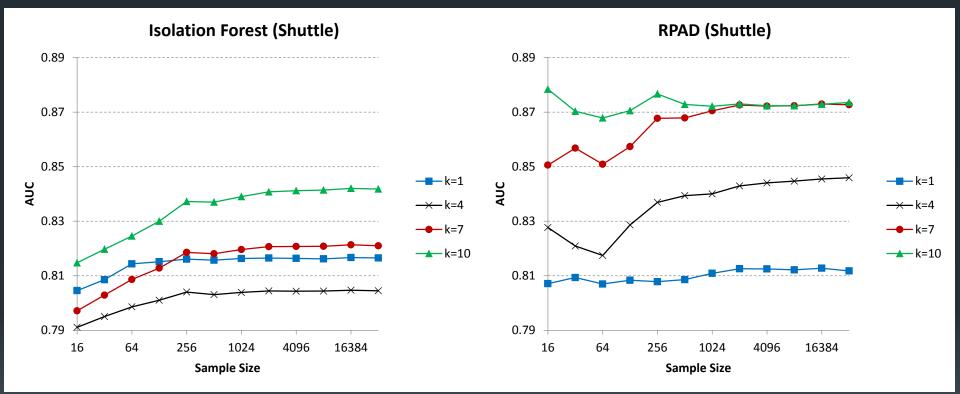
PatternMin is slower, but eventually beats IFOREST

Results: Particle



IFOREST is much better better

Results: Shuttle



PatternMin is consistently beats iForest for k > 1

NewRelic

RPAD Conclusions

The PAC-RPAD theory seems to capture the behavior of algorithms such as IFOREST
It is easy to design practical RPAD algorithms
Theory requires extension to handle sample-dependent pattern spaces *H*

Summary

- Density Estimation
 - Parametric Density Estimation
 - Mixture Models
 - Kernel Density Estimation
 - Neural Density Estimation
- Anomaly Detection
 - Distance-based methods
 - Isolation Forest and LODA
 DDAD theory
 - RPAD theory

Bibliography

- Silverman, B. W. (2018). Density estimation for statistics and data analysis. Routledge. [updated version of classic book]
- Sheather, S. J. (2004). Density Estimation. Statistical Science, 19(4), 588–597. Recent survey on kernel density estimation
- Hastie, T., Tibshirani, R., & Friedman, J. (2011). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd Edition). New York: Springer Verlag. Good textbook descriptions
- Papamakarios, G., Pavlakou, T., & Murray, I. (2017). Masked Autoregressive Flow for Density Estimation. In NIPS 2017. Retrieved from <u>http://arxiv.org/abs/1705.07057</u>
- Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation Forest. In 2008 Eighth IEEE International Conference on Data Mining (pp. 413–422). leee. <u>http://doi.org/10.1109/ICDM.2008.17</u>
- Pevný, T. (2015). Loda: Lightweight on-line detector of anomalies. Machine Learning, (November 2014). http://doi.org/10.1007/s10994-015-5521-0
- Emmott, A., Das, S., Dietterich, T., Fern, A., & Wong, W.-K. (2015). Systematic construction of anomaly detection benchmarks from real data. <u>http://arxiv.org/1503.01158v2</u>
- Siddiqui, A., Fern, A., Dietterich, T. G., & Das, S. (2016). Finite Sample Complexity of Rare Pattern Anomaly Detection. In *Proceedings of UAI-2016*.