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What is Density Estimation? 
Given a data set 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁  where 𝑥𝑥𝑖𝑖 ∈ ℝ𝑑𝑑 
We assume the data have been drawn iid from an 
unknown probability density: 𝑥𝑥𝑖𝑖~𝑃𝑃 𝑥𝑥𝑖𝑖  
Goal: Estimate 𝑃𝑃 
 
Requirements 
𝑃𝑃 𝑥𝑥 ≥ 0 ∀𝑥𝑥 ∈ ℝ𝑑𝑑 
∫ 𝑃𝑃 𝑥𝑥 𝑑𝑑𝑑𝑑 𝑥𝑥∈ℝ𝑑𝑑 = 1 
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How to Evaluate a Density Estimator 

Suppose I have computed a density estimator 𝑃𝑃� for 
𝑃𝑃. How can I evaluate it? 
A good density estimator should assign high density 
where 𝑃𝑃 is large and low density where 𝑃𝑃 is low 
Standard metric: the Log Likelihood 

� log𝑃𝑃� 𝑥𝑥𝑖𝑖
𝑖𝑖
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Important: Holdout Likelihood 
If we use our training data to construct 𝑃𝑃�, we cannot 
use that same data to evaluate 𝑃𝑃�.  
Solution: 
Given our initial data 𝑆𝑆 = 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁 
Randomly split into 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
Compute 𝑃𝑃� using 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
Evaluate 𝑃𝑃� using 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

� log𝑃𝑃� 𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖∈𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
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Reminder: Densities, Probabilities, 
Events 
A density 𝜇𝜇 is a “measure” over some space 𝒳𝒳 
A density can be > 1 but must integrate to 1 
An “event” is a subspace (region) 𝐸𝐸 ⊆ 𝒳𝒳 
The probability of an event is obtained by integration 

𝑃𝑃 𝐸𝐸 = � 𝜇𝜇 𝑥𝑥 𝑑𝑑𝑑𝑑
𝑥𝑥∈𝐸𝐸
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Example from the ipython notebook 
Normal probability density 

𝑃𝑃 𝑥𝑥;𝜇𝜇,𝜎𝜎 =
1
2𝜋𝜋𝜎𝜎

exp−
1
2
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

2
 

Normal cumulative distribution 
function 
𝐹𝐹 𝑧𝑧; 𝜇𝜇,𝜎𝜎 = probability of the event 
−∞, 𝑧𝑧  

𝐹𝐹 𝑧𝑧; 𝜇𝜇,𝜎𝜎 = ∫ 𝑃𝑃 𝑥𝑥; 𝜇𝜇,𝜎𝜎 𝑑𝑑𝑑𝑑 𝑧𝑧
∞  
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Why Estimate Densities? 
Anomaly Detection 
Classification 
 
If we can learn high-dimensional densities, then all 
machine learning problems can be solved using 
probabilistic methods 
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Anomaly Detection 
Anomaly: A data point generated 
by a different process than the 
process that generates the normal 
data points 
Example: Fraud Detection 
 Normal points: Legitimate financial 

transactions 
 Anomaly points: Fraudulent transactions 
Example: Sensor Data 
 Normal points: Correct data values 
 Anomaly points: Bad values (broken 

sensors) 
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Anomaly Score using Surprise 
In information theory, the surprise of an observation 
𝑥𝑥, 𝑆𝑆(𝑥𝑥) is defined as 

𝑆𝑆 𝑥𝑥 = − log𝑃𝑃 𝑥𝑥  
 
Properties: 
 If 𝑃𝑃 𝑥𝑥 = 0, then 𝑆𝑆 𝑥𝑥 = +∞ 
 If 𝑃𝑃 𝑥𝑥 = 1, then 𝑆𝑆 𝑥𝑥 = 0 

 
Surprise is only defined for events, but we often use 
it for densities when we are interested on small 
values of 𝑃𝑃(𝑥𝑥) 
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Example 
Nominal distribution: 

Normal 0,1  
Anomaly distribution: 

Normal(3,1) 
Generate 100 nominals and 
10 anomalies 
Plot anomaly score as a 
function of 𝑥𝑥 
Setting a threshold at 2.39 
will detect all anomalies and 
also have 8 false alarms 
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Classification 
Class-Conditional Models 
Goal: Predict 𝑦𝑦 from 𝑥𝑥 
Model the process that creates the data: 
 𝑦𝑦 ~ 𝑃𝑃 𝑦𝑦  discrete 
 𝑥𝑥 ~ 𝑃𝑃 𝑥𝑥 𝑦𝑦 = 𝑁𝑁 𝑥𝑥 𝜇𝜇𝑦𝑦, Σ𝑦𝑦   Gaussian 

 “Conditional Density Estimation” 
Classification via probabilistic inference 

 𝑃𝑃 𝑦𝑦 𝑥𝑥 = 𝑃𝑃 𝑦𝑦 𝑁𝑁(𝑥𝑥|𝜇𝜇𝑦𝑦,Σ𝑦𝑦)

∑ 𝑃𝑃 𝑦𝑦′ 𝑁𝑁 𝑥𝑥 𝜇𝜇𝑦𝑦′Σ𝑦𝑦′𝑦𝑦′
 

Which class 𝑦𝑦 best explains the observed 𝑥𝑥? 
Challenge: 𝑃𝑃(𝑥𝑥|𝑦𝑦) is usually very 

complex and difficult to model.  
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Parametric Density Estimation 
Assume 𝑃𝑃 𝑥𝑥 = Normal 𝑥𝑥 𝜇𝜇, Σ  is the multivariate 
Gaussian distribution 

𝑃𝑃 𝑥𝑥 = 1
2𝜋𝜋 𝑑𝑑 det Σ

exp−1
2
𝑥𝑥 − 𝜇𝜇 ⊤Σ−1 𝑥𝑥 − 𝜇𝜇  

Fit by computing moments: 
 𝜇̂𝜇 = 1

𝑁𝑁
∑ 𝑥𝑥𝑖𝑖  𝑖𝑖  

Σ� = 1
𝑁𝑁
∑ 𝑥𝑥𝑖𝑖 − 𝜇̂𝜇 𝑥𝑥𝑖𝑖 − 𝜇̂𝜇 ⊤
𝑖𝑖  
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Example 
Sample 100 points from 
multivariate Gaussian with 
𝜇𝜇 = (2,2) and Σ =  1 1.5

1.5 4  

Estimates: 
 𝜇̂𝜇 = 1.968731, 1.894511  

Σ� = 1.081423 1.462467
1.462467 4.000821  
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Mixture Models 
𝑃𝑃 𝑥𝑥 = ∑ 𝑃𝑃 𝑐𝑐 𝑃𝑃(𝑥𝑥|𝑐𝑐)𝑐𝑐  
𝑐𝑐 indexes the mixture 
component 
Each mixture component 
has its own conditional 
density 𝑃𝑃 𝑥𝑥 𝑐𝑐  
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𝑐𝑐 

𝑥𝑥 



Mixture Models 
Example 
𝑃𝑃 𝑐𝑐 = 1 = 2/3 
𝑃𝑃 𝑐𝑐 = 2 = 1/3 
𝑃𝑃(𝑥𝑥|𝑐𝑐 = 1) “o” 
𝑃𝑃(𝑥𝑥|𝑐𝑐 = 2) “+” 
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𝑐𝑐 = 1 

𝑐𝑐 = 2 



Fitting Mixture Models:  
Expectation Maximization 
Choose the number of mixture components 𝐾𝐾 
Create a matrix 𝑅𝑅 of dimension 𝐾𝐾 × 𝑁𝑁. This will 
represent 𝑃𝑃 𝑐𝑐𝑖𝑖 = 𝑘𝑘 𝑥𝑥𝑖𝑖 = 𝑅𝑅 𝑘𝑘, 𝑖𝑖  
This is called the “membership probability”. The probability 

that data point 𝑖𝑖 was generated by component 𝑘𝑘 
Randomly initialize 𝑅𝑅 𝑘𝑘, 𝑖𝑖 ∈ (0,1) subject to the 
constraint that ∑ 𝑅𝑅[𝑘𝑘, 𝑖𝑖]𝑘𝑘 = 1 
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EM Algorithm Main Loop 
𝑀𝑀 step: Maximum likelihood estimation of the model 
parameters using the data 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁 and 𝑅𝑅 
𝑃𝑃� 𝑐𝑐 = 𝑘𝑘 ≔ 1

𝑁𝑁
∑ 𝑃𝑃(𝑐𝑐𝑖𝑖 = 𝑘𝑘|𝑥𝑥𝑖𝑖)𝑖𝑖  

 𝜇̂𝜇𝑘𝑘 ≔
1

𝑁𝑁 𝑃𝑃� 𝑐𝑐=𝑘𝑘
∑ 𝑃𝑃 𝑐𝑐𝑖𝑖 = 𝑘𝑘 𝑥𝑥𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖  

Σ�𝑘𝑘 ≔
1

𝑁𝑁 𝑃𝑃� 𝑐𝑐=𝑘𝑘
∑ 𝑃𝑃 𝑐𝑐𝑖𝑖 = 𝑘𝑘 𝑥𝑥𝑖𝑖 𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖⊤𝑖𝑖  

𝐸𝐸  step: Re-estimate 𝑅𝑅 
𝑅𝑅 𝑘𝑘, 𝑖𝑖 ≔ 𝑃𝑃� 𝑐𝑐 = 𝑘𝑘 Normal 𝑥𝑥𝑖𝑖 𝜇̂𝜇𝑘𝑘 ,Σ�𝑘𝑘  
𝑅𝑅 𝑘𝑘, 𝑖𝑖 ≔ 𝑅𝑅[𝑘𝑘, 𝑖𝑖]/∑ 𝑅𝑅 𝑘𝑘, 𝑖𝑖𝑘𝑘  
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Results on Our Example 
[R mclust package] 
Estimates 
mixing proportions 
 (0.649, 0.351) 

means:  
 (2.014, 1.967) 
 (−0.631,−0.957) 

True values 
Mixing proportions: 
 (0.667, 0.333) 

Means: 
 (2.000,2.000) 
 (−1.000,−1.000) 
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Mixture Model Summary 
Can fit very complex distributions 
EM is a local search algorithm 
Different random initializations can find different fitted 

models 
There are some new moment-based methods that find the 

global optimum 
Difficult to choose the number of mixture components 
There are many heuristics for this 
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Kernel Density Estimation 
Define a mixture model with one mixture component 
for each data point 
𝑃𝑃� 𝑥𝑥 = 1

𝑁𝑁
∑ 𝐾𝐾 𝑥𝑥 − 𝑥𝑥𝑖𝑖 ,𝜎𝜎2𝑁𝑁
𝑖𝑖=1  

Often use a Gaussian Kernel 𝐾𝐾 𝑥𝑥,𝜎𝜎2 = 1
2𝜋𝜋𝜎𝜎

exp − 𝑥𝑥2

2𝜎𝜎2
 

Often use a fixed scale 𝜎𝜎2. The scale is also called the 
“bandwidth” 
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One-Dimensional Example 
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Design Decisions 
Choice of Kernel: generally not important as long as 
it is local 
Choice of bandwidth is very important 
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Challenges 
KDE in high dimensions suffers from the “Curse of 
Dimensionality” 
The amount of data required to achieve a desired 
level of accuracy scales exponentially with the 
dimensionality 𝑑𝑑 of the problem: exp 𝑑𝑑+4

2
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Factoring the Joint Density into 
Conditional Distributions 
Let 𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑  be a vector of random variables. 
We wish to model the joint distribution 𝑃𝑃(𝑥𝑥).  
By the chain rule of probability, we can write this as 
𝑃𝑃 𝑥𝑥 = 𝑃𝑃 𝑥𝑥1 𝑃𝑃 𝑥𝑥2 𝑥𝑥1 𝑃𝑃 𝑥𝑥3 𝑥𝑥1, 𝑥𝑥2 ⋯𝑃𝑃 𝑥𝑥𝑑𝑑 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑−1  
We can model 𝑃𝑃 𝑥𝑥1  using any 1-D method (e.g., 
KDE).  
We can model each conditional distribution using 
regression methods 
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Linear Regression = Conditional 
Density Estimation 
Let x = 𝑥𝑥1, … , 𝑥𝑥𝐽𝐽  be the predictor variables and 𝑦𝑦 be 
the response variable 
Standard least-squares linear regression models the 
conditional probability distribution was 
𝑃𝑃 𝑦𝑦 𝑥𝑥 ~Normal 𝑦𝑦;  𝜇𝜇 𝑥𝑥 ,𝜎𝜎2  
where 𝜇𝜇 𝑥𝑥 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + ⋯+ 𝛽𝛽𝐽𝐽𝑥𝑥𝐽𝐽 
and 𝜎𝜎2 is a fitted constant 
Neural networks trained to minimize squared error 
model the mean as 𝜇𝜇 𝑥𝑥 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑥𝑥;𝑊𝑊 , where 𝑊𝑊 are 
the weights of the neural network 
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Deep Neural Networks for Density 
Estimation 
Masked Auto-Regressive Flow (Papamarkarios, 2017) 
Apply the chain rule of probability 

𝑃𝑃 𝑥𝑥𝑗𝑗 𝑥𝑥1:𝑗𝑗−1 = Normal 𝑥𝑥𝑗𝑗; 𝜇𝜇𝑗𝑗 , exp𝛼𝛼𝑗𝑗
2  where 

 𝜇𝜇𝑗𝑗 = 𝑓𝑓𝑗𝑗 𝑥𝑥1:𝑗𝑗−1  and 𝛼𝛼𝑗𝑗 = 𝑔𝑔𝑗𝑗 𝑥𝑥1:𝑗𝑗−1  are implemented by neural 
networks 

Re-parameterization trick for sampling 𝑥𝑥𝑗𝑗~𝑃𝑃 𝑥𝑥𝑗𝑗 𝑥𝑥1:𝑗𝑗−1  
 Let 𝑢𝑢𝑗𝑗~Normal(0,1) 
 𝑥𝑥𝑗𝑗 = 𝑢𝑢𝑗𝑗 exp𝛼𝛼𝑗𝑗 + 𝜇𝜇𝑗𝑗  
 (rescale by the standard deviation and displace by the mean) 
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Transformation View 
Equivalent model: 𝐮𝐮~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝐮𝐮; 0, 𝐼𝐼) is a vector of 𝐽𝐽 
standard normal random variates 
𝐱𝐱 = 𝐹𝐹(𝐮𝐮) transforms those random variates into the 
observed data 
To compute 𝑃𝑃(𝐱𝐱) we can invert this function and 
evaluate Normal 𝐹𝐹−1 𝑥𝑥 ; 0, 𝐼𝐼  “almost” 

𝑃𝑃 𝑥𝑥 = Normal 𝐹𝐹−1 𝑥𝑥 ; 0, 𝐼𝐼 det 𝜕𝜕𝐹𝐹−1 𝑥𝑥
𝜕𝜕𝜕𝜕

 
This ensures that 𝑃𝑃 integrates to 1 
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Derivative of 𝐹𝐹−1 is Simple 
Because of the “triangular” structure created by the 
chain rule,  

 det 𝜕𝜕𝐹𝐹−1 𝑥𝑥
𝜕𝜕𝜕𝜕

= exp −∑ 𝛼𝛼𝑗𝑗𝑗𝑗  
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𝐹𝐹 is Easy to Invert 
𝑢𝑢𝑗𝑗 = 𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑗𝑗 exp −𝛼𝛼𝑗𝑗  
where 𝜇𝜇𝑗𝑗 = 𝑓𝑓𝑗𝑗 𝑥𝑥1:𝑗𝑗−1  and 𝛼𝛼𝑗𝑗 = 𝑔𝑔𝑗𝑗 𝑥𝑥1:𝑗𝑗−1  
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Masked Auto-Regressive Flow 

“mask” ensures that 𝑓𝑓𝑗𝑗 and 𝑔𝑔𝑗𝑗  only depend on 𝑥𝑥1:𝑗𝑗−1 
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𝐱𝐱 𝐟𝐟,g 



Stacking MAFs 
One MAF network is often not sufficient 
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True Density Fitted Density from 
single MAF network 

Distribution of the 𝐮𝐮 
values 



Stack MAFs until the 𝐮𝐮 values are 
Normal(0,I) 
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True Density Fitted Density from 
stack of 5 MAFs 

Distribution of the 𝐮𝐮 
values 



Test Set Log Likelihood 
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Part 2: Other Anomaly Detection 
Approaches 
Do we need accurate density estimates to do 
anomaly detection? 
Maybe not 
Rank points proportional to − log𝑃𝑃(𝑥𝑥) 
Detect low-probability outliers 
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Distance-Based Anomaly Detection 
Assume a distance metric ‖𝑥𝑥 − 𝑦𝑦‖ between any two 
data points 𝑥𝑥 and 𝑦𝑦 
𝐴𝐴(𝑥𝑥) = anomaly score = distance to 𝑘𝑘-th nearest data 
point 
Points in empty regions of the input space are likely 
to be anomalies 
 
There are many refinements of this basic idea 
Learned distance metrics can be helpful 
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Isolation Forest [Liu, Ting, Zhou, 2011] 

Construct a fully random 
binary tree 
 choose attribute 𝑗𝑗 at random 
 choose splitting threshold 𝜃𝜃 

uniformly from 
min 𝑥𝑥⋅𝑗𝑗 , max 𝑥𝑥⋅𝑗𝑗  

 until every data point is in its 
own leaf 
 let 𝑑𝑑(𝑥𝑥𝑖𝑖) be the depth of point 𝑥𝑥𝑖𝑖 

 repeat 100 times 
 let 𝑑̅𝑑(𝑥𝑥𝑖𝑖) be the average depth 

of 𝑥𝑥𝑖𝑖 

 𝐴𝐴 𝑥𝑥𝑖𝑖 = 2
−

𝑑𝑑� 𝑥𝑥𝑖𝑖
𝑟𝑟 𝑥𝑥𝑖𝑖  

 𝑟𝑟(𝑥𝑥𝑖𝑖) is the expected depth  
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𝑥𝑥⋅𝑗𝑗          𝑥𝑥⋅𝑗𝑗 > 𝜃𝜃 

𝑥𝑥⋅2 > 𝜃𝜃2 𝑥𝑥⋅8 > 𝜃𝜃3 

𝑥𝑥⋅3 > 𝜃𝜃4 𝑥𝑥⋅1 > 𝜃𝜃5 

𝑥𝑥𝑖𝑖 



LODA: Lightweight Online Detector of 
Anomalies [Pevny, 2016]   
Π1, … ,Π𝑀𝑀 set of 𝑀𝑀 
sparse random 
projections 
𝑓𝑓1, … , 𝑓𝑓𝑀𝑀 
corresponding 1-
dimensional 
density estimators 
𝑆𝑆 𝑥𝑥 =
1
𝑀𝑀
∑ − log 𝑓𝑓𝑚𝑚(𝑥𝑥)𝑚𝑚   

average “surprise” 
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LODA: Lightweight Online Detector of 
Anomalies [Pevny, 2016]   
Π1, … ,Π𝑀𝑀 set of 𝑀𝑀 
sparse random 
projections 
𝑓𝑓1, … , 𝑓𝑓𝑀𝑀 
corresponding 1-
dimensional 
density estimators 
𝑆𝑆 𝑥𝑥 =
1
𝑀𝑀
∑ − log 𝑓𝑓𝑚𝑚(𝑥𝑥)𝑚𝑚   

average “surprise” 
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LODA: Lightweight Online Detector of 
Anomalies [Pevny, 2016]   
Π1, … ,Π𝑀𝑀 set of 𝑀𝑀 
sparse random 
projections 
𝑓𝑓1, … , 𝑓𝑓𝑀𝑀 
corresponding 1-
dimensional 
density estimators 
𝑆𝑆 𝑥𝑥 =
1
𝑀𝑀
∑ − log 𝑓𝑓𝑚𝑚(𝑥𝑥)𝑚𝑚   

average “surprise” 

-4 -2 0 2 4

-4
-2

0
2

4

x

y *
*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

**

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

  

       
D

en
si

ty-5

0

5

0.0

0.1

0.2

0.3

0.4

  

  
   

  

Den
sit

y

𝑓𝑓1  

NewRelic 42 



Benchmarking Study 
[Andrew Emmott] 

Most AD papers only evaluate on a few datasets 
Often proprietary or very easy (e.g., KDD 1999) 
Research community needs a large and growing 
collection of public anomaly benchmarks 

[Emmott, Das, Dietterich, Fern, Wong, 2013; KDD ODD-2013]  
[Emmott, Das, Dietterich, Fern, Wong. 2016; arXiv 1503.01158v2] 
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Benchmarking Methodology 
Select 19 data sets from UC Irvine repository 
Choose one or more classes to be “anomalies”; the 
rest are “nominals” 
Manipulate 
Relative frequency 
Point difficulty  
 Irrelevant features 
Clusteredness 
20 replicates of each configuration 
Result: 25,685 Benchmark Datasets 
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Algorithms 
Density-Based Approaches 
RKDE: Robust Kernel Density Estimation (Kim & Scott, 2008) 
EGMM: Ensemble Gaussian Mixture Model (our group) 
Quantile-Based Methods 
OCSVM: One-class SVM (Schoelkopf, et al., 1999) 
SVDD: Support Vector Data Description (Tax & Duin, 2004) 
Neighbor-Based Methods 
 LOF: Local Outlier Factor (Breunig, et al., 2000) 
ABOD: kNN Angle-Based Outlier Detector (Kriegel, et al., 2008) 
Projection-Based Methods 
 IFOR: Isolation Forest (Liu, et al., 2008) 
 LODA: Lightweight Online Detector of Anomalies (Pevny, 2016) 
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Analysis 
Linear ANOVA 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ~ 𝑟𝑟𝑟𝑟 + 𝑝𝑝𝑝𝑝 + 𝑐𝑐𝑐𝑐 + 𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
 rf: relative frequency 
 pd: point difficulty 
 cl: normalized clusteredness 
 ir: irrelevant features 
 mset: “Mother” set 
 algo: anomaly detection algorithm 

Validate the effect of each factor 
Assess the algo effect while controlling for all other 
factors 
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Algorithm Comparison 
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How Much Training Data is Needed? 
We looked at learning curves for anomaly detection  
On most benchmarks, we only need a few thousand 
points to get good detection rates 

That is certainly better than exp 𝑑𝑑+4
2

 

What is going on? 
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Rare Pattern Anomaly Detection 
[Siddiqui, et al.; UAI 2016] 

A pattern ℎ:ℜ𝑑𝑑 → {0,1} is an indicator function for a 
measurable region in the input space 
Examples: 
 Half planes 
 Axis-parallel hyper-rectangles in −1,1 𝑑𝑑 

A pattern space ℋ is a set of patterns (countable or 
uncountable) 
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Rare and Common Patterns 
Let 𝜇𝜇 be a fixed measure over ℜ𝑑𝑑 
 Typical choices:  
 uniform over −1, +1 𝑑𝑑 
 standard Gaussian over ℜ𝑑𝑑 

𝜇𝜇(ℎ) is the measure of the pattern defined by ℎ 
Let 𝑝𝑝 be the “nominal” probability density defined on ℜ𝑑𝑑 
(or on some subset) 
𝑝𝑝(ℎ) is the probability of pattern ℎ 
A pattern ℎ is 𝜏𝜏-rare if  

𝑓𝑓 ℎ =
𝑝𝑝 ℎ
𝜇𝜇 ℎ

≤ 𝜏𝜏 

Otherwise it is 𝜏𝜏-common 
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Rare and Common Points 
A point 𝑥𝑥 is 𝜏𝜏-rare if there exists a 𝜏𝜏-rare ℎ such that 
ℎ 𝑥𝑥 = 1 
Otherwise a point is 𝜏𝜏-common 
 
Goal: An anomaly detection algorithm should output 
all 𝜏𝜏-rare points and not output any 𝜏𝜏-common points 
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PAC-RPAD 
Algorithm 𝒜𝒜 is PAC-RPAD for  
 pattern space ℋ,  
 measure 𝜇𝜇,  
 parameters 𝜏𝜏, 𝜖𝜖, 𝛿𝛿  

if for any probability density 𝑝𝑝 and any 𝜏𝜏, 𝒜𝒜 draws a sample from 𝑝𝑝 
and with probability 1 − 𝛿𝛿  
detects all 𝜏𝜏-rare points and rejects all (𝜏𝜏 + 𝜖𝜖)-common points in the 
sample 
 
 𝜖𝜖 allows the algorithm some margin for error 
 If a point is between 𝜏𝜏-rare and 𝜏𝜏 + 𝜖𝜖 -common, the algorithm can 

treat it arbitrarily 
Running time polynomial in 1

𝜖𝜖
, 1
𝛿𝛿
, and 1

𝜏𝜏
, and some measure of the 

complexity of ℋ 
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RAREPATTERNDETECT 
Draw a sample of size 𝑁𝑁(𝜖𝜖, 𝛿𝛿) from 𝑝𝑝 
Let 𝑝̂𝑝(ℎ) be the fraction of sample points that satisfy 
ℎ 

Let 𝑓𝑓 ℎ = 𝑝𝑝� ℎ
𝜇𝜇 ℎ

 be the estimated rareness of ℎ 

A query point 𝑥𝑥𝑞𝑞 is declared to be an anomaly if there 
exists a pattern ℎ ∈ ℋ such that ℎ 𝑥𝑥𝑞𝑞 = 1 and 
𝑓𝑓 ℎ ≤ 𝜏𝜏. 
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Results 
Theorem 1: For any finite pattern space ℋ, 
RAREPATTERNDETECT is PAC-RPAD with sample 
complexity  

𝑁𝑁 𝜖𝜖, 𝛿𝛿 = 𝑂𝑂
1
𝜖𝜖2

log ℋ + log
1
𝛿𝛿

 

Theorem 2: For any pattern space ℋ with finite VC 
dimension 𝒱𝒱ℋ, RAREPATTERNDETECT is PAC-RPAD 
with sample complexity  

𝑁𝑁 𝜖𝜖, 𝛿𝛿 = 𝑂𝑂
1
𝜖𝜖2

𝒱𝒱ℋ log
1
𝜖𝜖2

+ log
1
𝛿𝛿
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Intuition: Surround the data with rare 
patterns 

55 

If a query point 
hits one of the 
rare patterns, 
declare it to be an 
anomaly 
 
We only estimate 
the probability of 
each pattern, not 
the full density 



Isolation RPAD 
Grow an isolation forest 
Each tree is only grown to depth 𝑘𝑘 
Each leaf defines a pattern ℎ 
𝜇𝜇 is the volume (Lebesgue measure) 
Compute 𝑓𝑓(ℎ) for each leaf 
Details 
Grow the tree using one sample 
Estimate 𝑓𝑓 using a second sample 
Score query point(s) 

𝑥𝑥1 < 0.2 

𝑥𝑥2 < 0.6 

𝑥𝑥1 < 0.5 

ℎ1 

ℎ2 

ℎ3 ℎ4 
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Results: Covertype 

PatternMin is slower, but eventually beats IFOREST 
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Results: Particle  

IFOREST is much better better 
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Results: Shuttle 

PatternMin is consistently beats iForest for 𝑘𝑘 > 1 
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RPAD Conclusions 
The PAC-RPAD theory seems to capture the 
behavior of algorithms such as IFOREST 
It is easy to design practical RPAD algorithms 
Theory requires extension to handle sample-
dependent pattern spaces ℋ 
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Summary 
Density Estimation 
Parametric Density Estimation 
Mixture Models 
Kernel Density Estimation 
Neural Density Estimation 
Anomaly Detection 
Distance-based methods 
 Isolation Forest and LODA 
RPAD theory 
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