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What Is Density Estimation? |

=Given a data set {x4, ..., xy} Where x; € R?

=\We assume the data have been drawn I1id from an
unknown probability density: x;~P (x;)

=Goal: Estimate P

*Requirements
“P(x) > 0Vx € R
“J o cpa P(X)dx =1
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How to Evaluate a Density Estimator |.

=Suppose | have computed a density estimator P for
P. How can | evaluate It?

= A good density estimator should assign high density
where P Is large and low density where P Is low

=Standard metric: the Log Likelihood

z log P(x;)
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Important: Holdout Likelihood |

=|f we use our training data to construct P, we cannot
use that same data to evaluate P.

= Solution:
= Given our initial data S = x4, ..., Xy
= Randomly split into S;,q;, and Siet
= Compute P using S;,4in
= Evaluate P using S;.q;

z log P(x;)

Xi€Stest
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Reminder: Densities, Probabillities,

Events |.

=A density u Is a “measure” over some space X

=A density can be > 1 but must integrate to 1

=An “event” Is a subspace (region) E € X

=The probability of an event is obtained by integration

P(E) =f u(x)dx

XEE
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Example from the ipython notebook

=Normal probability density

p( ) 1 1 [x — up?
X;U,0) = exp —

= 21O . 21 o
=Normal cumulative distribution

function
= F(z; u,0) = probability of the event
[_OO) Z]

“F(z;1,0) = [ P(x; 1, 0)dx
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Why Estimate Densities? |

= Anomaly Detection
= Classification

=|f we can learn high-dimensional densities, then all
machine learning problems can be solved using
probabllistic methods
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Anomaly Detection

=Anomaly: A data point generated
by a different process than the
process that generates the normal
data points

= Example: Fraud Detection

= Normal points: Legitimate financial
transactions

= Anomaly points: Fraudulent transactions
= Example: Sensor Data

= Normal points: Correct data values

= Anomaly points: Bad values (broken
Sensors)
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Anomaly Score using Surprise |

*|n information theory, the surprise of an observation
x, S(x) Is defined as
S(x) = —logP(x)

*Properties:
=|If P(x) =0, then S(x) = 4+
=|If P(x) =1,then S(x) =0

=Surprise Is only defined for events, but we often use
It for densities when we are interested on small
values of P(x)
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Example

= Nominal distribution:
Normal(0,1)

= Anomaly distribution:
Normal(3,1)

= Generate 100 nominals and
10 anomalies

= Plot anomaly score as a
function of x

= Setting a threshold at 2.39
will detect all anomalies and
also have 8 false alarms
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Classification

= Class-Conditional Models
= Goal: Predict y from x

= Model the process that creates the data:

= y ~ P(y) discrete
=x ~P(x|ly) = N(x|uy, Zy) Gaussian

= “Conditional Density Estimation”

= Classification via probabilistic inference
P(Y)N(x|py.Zy)

2oy P(y’)N(x|”y’Zy’)

= Which class y best explains the observed x?

= Challenge: P(x|y) is usually very
complex and difficult to model.

“P(ylx) =
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Parametric Density Estimation |

=Assume P(x) = Normal(x|y, X) is the multivariate
Gaussian distribution

1
P(x) = JeCm4 det(®)

*Fit by computing moments:

1 _
exp—=(x — )" Z7H(x — )

A1
U =;Zixi

%= =3 — D0 — )T

6/2/2018 14



Sample 100 points from
multivariate Gaussian with

. _T1 1.5
u=(22)andx = [1.5 4]
Estimates:

i = (1.968731,1.894511)

2:[1.081423 1.462467
1.462467 4.000821

6/2/2018

15



Mixture Models
"P(x) = X P(c)P(x|c)

=c Indexes the mixture
component

=Each mixture component
has its own conditional
density P(x|c)

6/2/2018
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Mixture Models

=Example
“P(c=1)=2/3
“P(c=2)=1/3
“P(x|c=1) “0"
"P(x|c =2) "+’
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Fitting Mixture Models:
Expectation Maximization |.

=Choose the number of mixture components K
=Create a matrix R of dimension K X N. This will
represent P(c; = k|x;) = R|k,i]

= This Is called the “membership probability”. The probability
that data point i was generated by component k

=Randomly initialize R|k, i] € (0,1) subject to the
constraint that ), R[k,i] = 1
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EM Algorithm Main Loop |

=M step: Maximum likelihood estimation of the model
parameters using the data x4, ..., xy and R

'p(C =k) := %ZiP(ci = k|x;)

A 1
" = ez 2i Plei = klx)x;

a 1
"Lk = Yo i Plei =k x)|xx] |
“F step: Re-estimate R

“R[k,i] = P(c = k)Normal(ximk,ik)

“R[k,i] == R[k,i]/ X R[k, ]
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Estimates
mixing proportions
(0.649,0.351)
means:
(2.014,1.967)
(—0.631,—0.957)
True values
Mixing proportions:
(0.667,0.333)
Means:

(2.000,2.000)
(=1.000,—1.000)
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Mixture Model Summary

=Can fit very complex distributions

=EM is a local search algorithm

= Different random Initializations can find different fitted
models

= There are some new moment-based methods that find the
global optimum

= Difficult to choose the number of mixture components
= There are many heuristics for this
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Kernel Density Estimation |

=Define a mixture model with one mixture component
for each data point

~ 1
P() = EIL K (x = x,,09)

= Often use a Gaussian Kernel K (x,0%) = J_a exp [— 202]

= Often use a fixed scale o2. The scale is also called the
“bandwidth”
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One-Dimensional Example
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Design Decisions |

=Choice of Kernel: generally not important as long as
it Is local

=Choice of bandwidth is very important

h = 0.2 (undersmooth)
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Challenges |

=KDE in high dimensions suffers from the “Curse of
Dimensionality”

*The amount of data required to achieve a desired
level of accuracy scales exponentially with the
dimensionality d of the problem: exp%
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Factoring the Joint Density Into
Conditional Distributions |.

=Let x = (x4, ..., x4) be a vector of random variables.
We wish to model the joint distribution P(x).

=By the chalin rule of probabillity, we can write this as
P(x) = P(x1)P(xz|xq )P (x3|x1, x2) -+« P(xql%xq1, oov, Xg-1)

=We can model P(x,) using any 1-D method (e.g.,
KDE).

=\We can model each conditional distribution using
regression methods
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Linear Regression = Conditional
Density Estimation |.

“Let x = (xy, ..., x;) be the predictor variables and y be
the response variable

=Standard least-squares linear regression models the
conditional probability distribution was

=P(y|x)~Normal(y; u(x),o?)
'Whel‘e ,U.(X) = IBO -+ ,lel + -4 ﬁ]x]
=and ¢*“ is a fitted constant

=Neural networks trained to minimize squared error
model the mean as u(x) = NNet(x; W), where W are
the weights of the neural network
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Deep Neural Networks for Density
Estimation |.

Masked Auto-Regressive Flow (Papamarkarios, 2017)
= Apply the chain rule of probability
2
-P(xj‘xl:j_l) = Normal (xj; Ui, (exp aj) ) where
“u; = fi(x1.;-1) and a; = gj(x1.j—1) are implemented by neural
networks
* Re-parameterization trick for sampling x;~P(x;|x1.;_1)
= Let uj~Normal(0,1)
'Xj = U,j expaj +,U]
= (rescale by the standard deviation and displace by the mean)

6/2/2018 28



Transformation View |.

=Equivalent model: u~Normal(u; 0,1) Is a vector of |
standard normal random variates

=x = F(u) transforms those random variates into the
observed data

=To compute P(x) we can invert this function and
evaluate Normal(F~1(x); 0, 1) “almost”

OF ™~ 1(x)] ‘

*P(x) = Normal(F~1(x);0,1) Idet[

= This ensures that P integrates to 1
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Derivative of F~1 is Simple |

=Because of the “triangular” structure created by the
chain rule,

[aF 1(x)” — exp (= 5, @)
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F is Easy to Invert

w; = (x5 — p;) exp(—a;)
“where p; = fij(x1,-1) and a; = g;(x1.j-1)



Masked Auto-Regressive Flow |

xlf,g

=“mask” ensures that f; and g; only depend on x;.;_,



Stacking MAFs

=0One MAF network is often not sufficient

True Density Fitted Density from Distribution of the u
single MAF network values
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Stack MAFs until the u values are
Normal(0,I)

True Density Fitted Density from Distribution of the u
stack of 5 MAFs values
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Gaussian

MADE
MADE MoG

Real NVP (5)
Real NVP (10)

MAF (5)
MAF (10)
MAF MoG (5)
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POWER
—7.74 £ 0.02
—23.08 £0.03

0.40 +£0.01

—0.024+0.01
0.17+0.01
0.14 +£0.01

0.24 +0.01
0.30 £ 0.01

GAS
—3.58 +£0.75
3.56 4+ 0.04
8.47 4+ 0.02

4.78 +1.80
8.334+0.14

9.07 +£ 0.02

10.08 £0.02

9.59 4+ 0.02

HEPMASS
—27.93 +£0.02

—20.98 +0.02

—15.15 +0.02

—19.62 +0.02
—18.71 +0.02
—17.70 £ 0.02
—17.73 +0.02
—17.39 4+ 0.02

MINIBOONE
—37.2441.07
—15.59 4+ 0.50
—12.27 +£0.47
—13.55+0.49
—13.84 £ 0.52

~11.75+0.44
—12.24 +0.45

BSDS300

96.67 4+ 0.25
148.85 + 0.28
153.71 £+ 0.28
152.97 + 0.28
153.28 +1.78
155.69 4 0.28
154.93 £ 0.28

—11.684+0.44 156.36 +0.28
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Part 2. Other Anomaly Detection
Approaches |.

Do we need accurate density estimates to do
anomaly detection?

*Maybe not
= Rank points proportional to —log P(x)
= Detect low-probability outliers
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Distance-Based Anomaly Detection |

=Assume a distance metric ||x — y|| between any two
data points x and y

=A(x) = anomaly score = distance to k-th nearest data
point

=Points in empty regions of the input space are likely
to be anomalies

=There are many refinements of this basic idea
= Learned distance metrics can be helpful
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|solation Forest [Liu, Ting, Zhou, 2011]

= Construct a fully random
binary tree
= choose attribute j at random

= choose splitting threshold 6
uniformly from

[min(x. j) ) max(x. ])]
= until every data point is in its
own leaf

= let d(x;) be the depth of point x;
= repeat 100 times

= let d(x;) be the average depth
of Xi

_(a(xi))
u A(xi) = r(xi)
= r(x;) is the expected depth

6/2/2018 39



LODA: Lightweight Online Detector of
Anomalies [pevny, 2016]

=114, ..., 11, set of M
sparse random
projections

.fl' ""fM

corresponding 1-
dimensional
density estimators

=S(x) =

1
=3 —0g fi (x)
average “surprise”
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LODA: Lightweight Online Detector of
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LODA: Lightweight Online Detector of
Anomalies [pevny, 2016]

=114, ..., 11, set of M
sparse random
projections

.fl' ""fM

corresponding 1-
dimensional
density estimators

NOE
= % — 10g fin (%)
average “surprise”
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Benchmarking Study I

[Andrew Emmott]

=Most AD papers only evaluate on a few datasets
= Often proprietary or very easy (e.g., KDD 1999)

=Research community needs a large and growing
collection of public anomaly benchmarks

[Emmott, Das, Dietterich, Fern, Wong, 2013; KDD ODD-2013]
[Emmott, Das, Dietterich, Fern, Wong. 2016; arXiv 1503.01158v2]
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Benchmarking Methodology |

=Select 19 data sets from UC Irvine repository

=Choose one or more classes to be “anomalies”; the
rest are “nominals”

= Manipulate
= Relative frequency
= Point difficulty
= [rrelevant features
= Clusteredness

=20 replicates of each configuration
= Result: 25,685 Benchmark Datasets
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Algorithms |

= Density-Based Approaches
= RKDE: Robust Kernel Density Estimation (Kim & Scott, 2008)
= EGMM: Ensemble Gaussian Mixture Model (our group)

= Quantile-Based Methods

= OCSVM: One-class SVM (Schoelkopf, et al., 1999)

= SVDD: Support Vector Data Description (Tax & Duin, 2004)
= Neighbor-Based Methods

= LOF: Local Outlier Factor (Breunig, et al., 2000)

= ABOD: kNN Angle-Based Outlier Detector (Kriegel, et al., 2008)
= Projection-Based Methods

* |[FOR: Isolation Forest (Liu, et al., 2008)
= LODA: Lightweight Online Detector of Anomalies (Pevny, 2016)
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Analysis |

=Linear ANOVA

“metric ~rf + pd + cl + ir + mset + algo
= rf: relative frequency
= pd: point difficulty
= cl: normalized clusteredness
= Ir: irrelevant features
= mset: “Mother” set
= algo: anomaly detection algorithm

=Validate the effect of each factor

= Assess the algo effect while controlling for all other
factors
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Algorithm Comparison

Change in Metric wrt Control

Dataset

0.8

0.6

0.4

0.2

=o=|0git(AUC)
»log(LIFT)

iforest egmm lof rkde abod loda ocsvm svdd




How Much Training Data is Needed? |.

=\We looked at learning curves for anomaly detection

=On most benchmarks, we only need a few thousand
points to get good detection rates

=That Is certainly better than exp%

=What Is going on?
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Rare Pattern Anomaly Detection I
[Siddiqui, et al.; UAI 2016]

=A pattern h: R¢ — {0,1} is an indicator function for a
measurable region in the input space

= Examples:
= Half planes
= Axis-parallel hyper-rectangles in [—-1,1]¢
= A pattern space H Is a set of patterns (countable or
uncountable)
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Rare and Common Patterns |.

=Let u be a fixed measure over R¢

= Typical choices:
= uniform over [—1, +1]¢
= standard Gaussian over R¢

=u(h) Is the measure of the pattern defined by h

=Let p be the “nominal”’ probability density defined on R
(or on some subset)

=p(h) is the probability of pattern h
= A pattern h is t-rare |if
p(h)

f(h)_@_

= Otherwise It IS T-common
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Rare and Common Points |.

=A point x Is t-rare If there exists a z-rare h such that
h(x) =1

=Otherwise a point iIs T-common

=Goal: An anomaly detection algorithm should output
all z-rare points and not output any T-common points
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PAC-RPAD |

= Algorithm A is PAC-RPAD for
= pattern space H,
= measure u,
= parameters t,¢,0
If for any probability density p and any 7, A draws a sample from p
and with probability 1 — §

detects all z-rare points and rejects all (z + €)-common points in the
sample

= ¢ allows the algorithm some margin for error

= |f a point is between t-rare and (7 + €)-common, the algorithm can
treat it arbitrarily
1

_ _ .1
= Running time polynomial in =i

. and % and some measure of the
complexity of H
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RAREPATTERNDETECT |.

=Draw a sample of size N(¢,6) from p

=L et p(h) be the fraction of sample points that satisfy
h

=Let f(h) = igg be the estimated rareness of h

=A query point x, Is declared to be an anomaly If there
exists a pattern h € H such that h(x,) = 1 and

f(h) <.
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Results |.

*Theorem 1: For any finite pattern space H,
RAREPATTERNDETECT IS PAC-RPAD with sample
complexity

1 1
N(e, 6) =0 (6_2 (logl}[l + log5>)

=Theorem 2: For any pattern space H with finite VC
dimension V4, RAREPATTERNDETECT Is PAC-RPAD
with sample complexity

1 1 1
N(e, 6) =0 = V}[log +log5
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Intuition: Surround the data with rare
patterns

If a query point
hits one of the
rare patterns,
declare it to be an
anomaly

We only estimate
the probability of
each pattern, not
the full density
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Isolation RPAD |

=Grow an isolation forest l Xy < 0.2
= Each tree is only grown to depth k /\
= Each leaf defines a pattern h

= u Is the volume (Lebesgue measure) Xz < 0.6

= Compute f(h) for each leaf hy
=Detalls
= Grow the tree using one sample

= Estimate f using a second sample /
= Score guery point(s)

X1 < 0.5 hZ

h3 h4-
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Isolation Forest (Covertype) Pattern Min (Covertype)

1024 4096 16384 65536 1024 4096 16384 65536

Sample Size Sample Size

PatternMin is slower, but eventually beats IFOREST
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Isolation Forest (Particle) Pattern Min (Particle)

1024 4096 16384 65536 1024 4036 16384 65536

Sample Size Sample Size

IFOREST Is much better better
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Isolation Forest (Shuttle) RPAD (Shuttle)

256 1024 4096 16384 256 1024 4096 16384

Sample Size Sample Size

PatternMin is consistently beats iForest for k > 1
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RPAD Conclusions |.

*The PAC-RPAD theory seems to capture the
behavior of algorithms such as IFOREST

|t iIs easy to design practical RPAD algorithms

=Theory requires extension to handle sample-
dependent pattern spaces H
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Summary

= Density Estimation
= Parametric Density Estimation
= Mixture Models
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= Neural Density Estimation

= Anomaly Detection
= Distance-based methods
= [solation Forest and LODA
= RPAD theory
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