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What is Density Estimation? 
Given a data set 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁  where 𝑥𝑥𝑖𝑖 ∈ ℝ𝑑𝑑 
We assume the data have been drawn iid from an 
unknown probability density: 𝑥𝑥𝑖𝑖~𝑃𝑃 𝑥𝑥𝑖𝑖  
Goal: Estimate 𝑃𝑃 
 
Requirements 
𝑃𝑃 𝑥𝑥 ≥ 0 ∀𝑥𝑥 ∈ ℝ𝑑𝑑 
∫ 𝑃𝑃 𝑥𝑥 𝑑𝑑𝑥𝑥 𝑥𝑥∈ℝ𝑑𝑑 = 1 
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How to Evaluate a Density Estimator 

Suppose I have computed a density estimator 𝑃𝑃� for 
𝑃𝑃. How can I evaluate it? 
A good density estimator should assign high density 
where 𝑃𝑃 is large and low density where 𝑃𝑃 is low 
Standard metric: the Log Likelihood 

� log𝑃𝑃� 𝑥𝑥𝑖𝑖
𝑖𝑖
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Important: Holdout Likelihood 
If we use our training data to construct 𝑃𝑃�, we cannot 
use that same data to evaluate 𝑃𝑃�.  
Solution: 
Given our initial data 𝑆𝑆 = 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁 
Randomly split into 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 and 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
Compute 𝑃𝑃� using 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 
Evaluate 𝑃𝑃� using 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

� log𝑃𝑃� 𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖∈𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
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Reminder: Densities, Probabilities, 
Events 
A density 𝜇𝜇 is a “measure” over some space 𝒳𝒳 
A density can be > 1 but must integrate to 1 
An “event” is a subspace (region) 𝐸𝐸 ⊆ 𝒳𝒳 
The probability of an event is obtained by integration 

𝑃𝑃 𝐸𝐸 = � 𝜇𝜇 𝑥𝑥 𝑑𝑑𝑥𝑥
𝑥𝑥∈𝐸𝐸
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Example from the ipython notebook 
Normal probability density 

𝑃𝑃 𝑥𝑥;𝜇𝜇,𝜎𝜎 =
1
2𝜋𝜋𝜎𝜎

exp−
1
2
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

2
 

Normal cumulative distribution 
function 
𝐹𝐹 𝑧𝑧; 𝜇𝜇,𝜎𝜎 = probability of the event 
−∞, 𝑧𝑧  

𝐹𝐹 𝑧𝑧; 𝜇𝜇,𝜎𝜎 = ∫ 𝑃𝑃 𝑥𝑥; 𝜇𝜇,𝜎𝜎 𝑑𝑑𝑥𝑥 𝑧𝑧
∞  
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Why Estimate Densities? 
Anomaly Detection 
Classification 
 
If we can learn high-dimensional densities, then all 
machine learning problems can be solved using 
probabilistic methods 
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Anomaly Detection 
Anomaly: A data point generated 
by a different process than the 
process that generates the normal 
data points 
Example: Fraud Detection 
 Normal points: Legitimate financial 

transactions 
 Anomaly points: Fraudulent transactions 
Example: Sensor Data 
 Normal points: Correct data values 
 Anomaly points: Bad values (broken 

sensors) 
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Anomaly Score using Surprise 
In information theory, the surprise of an observation 
𝑥𝑥, 𝑆𝑆(𝑥𝑥) is defined as 

𝑆𝑆 𝑥𝑥 = − log𝑃𝑃 𝑥𝑥  
 
Properties: 
 If 𝑃𝑃 𝑥𝑥 = 0, then 𝑆𝑆 𝑥𝑥 = +∞ 
 If 𝑃𝑃 𝑥𝑥 = 1, then 𝑆𝑆 𝑥𝑥 = 0 

 
Surprise is only defined for events, but we often use 
it for densities when we are interested on small 
values of 𝑃𝑃(𝑥𝑥) 
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Example 
Nominal distribution: 

Normal 0,1  
Anomaly distribution: 

Normal(3,1) 
Generate 100 nominals and 
10 anomalies 
Plot anomaly score as a 
function of 𝑥𝑥 
Setting a threshold at 2.39 
will detect all anomalies and 
also have 8 false alarms 
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Classification 
Class-Conditional Models 
Goal: Predict 𝑦𝑦 from 𝑥𝑥 
Model the process that creates the data: 
 𝑦𝑦 ~ 𝑃𝑃 𝑦𝑦  discrete 
 𝑥𝑥 ~ 𝑃𝑃 𝑥𝑥 𝑦𝑦 = 𝑁𝑁 𝑥𝑥 𝜇𝜇𝑦𝑦, Σ𝑦𝑦   Gaussian 

 “Conditional Density Estimation” 
Classification via probabilistic inference 

 𝑃𝑃 𝑦𝑦 𝑥𝑥 = 𝑃𝑃 𝑦𝑦 𝑁𝑁(𝑥𝑥|𝜇𝜇𝑦𝑦,Σ𝑦𝑦)

∑ 𝑃𝑃 𝑦𝑦′ 𝑁𝑁 𝑥𝑥 𝜇𝜇𝑦𝑦′Σ𝑦𝑦′𝑦𝑦′
 

Which class 𝑦𝑦 best explains the observed 𝑥𝑥? 
Challenge: 𝑃𝑃(𝑥𝑥|𝑦𝑦) is usually very 

complex and difficult to model.  
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Parametric Density Estimation 
Assume 𝑃𝑃 𝑥𝑥 = Normal 𝑥𝑥 𝜇𝜇, Σ  is the multivariate 
Gaussian distribution 

𝑃𝑃 𝑥𝑥 = 1
2𝜋𝜋 𝑑𝑑 det Σ

exp−1
2
𝑥𝑥 − 𝜇𝜇 ⊤Σ−1 𝑥𝑥 − 𝜇𝜇  

Fit by computing moments: 
 �̂�𝜇 = 1

𝑁𝑁
∑ 𝑥𝑥𝑖𝑖  𝑖𝑖  

Σ� = 1
𝑁𝑁
∑ 𝑥𝑥𝑖𝑖 − �̂�𝜇 𝑥𝑥𝑖𝑖 − �̂�𝜇 ⊤
𝑖𝑖  
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Example 
Sample 100 points from 
multivariate Gaussian with 
𝜇𝜇 = (2,2) and Σ =  1 1.5

1.5 4  

Estimates: 
 �̂�𝜇 = 1.968731, 1.894511  

Σ� = 1.081423 1.462467
1.462467 4.000821  
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Mixture Models 
𝑃𝑃 𝑥𝑥 = ∑ 𝑃𝑃 𝑐𝑐 𝑃𝑃(𝑥𝑥|𝑐𝑐)𝑐𝑐  
𝑐𝑐 indexes the mixture 
component 
Each mixture component 
has its own conditional 
density 𝑃𝑃 𝑥𝑥 𝑐𝑐  
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𝑐𝑐 

𝑥𝑥 



Mixture Models 
Example 
𝑃𝑃 𝑐𝑐 = 1 = 2/3 
𝑃𝑃 𝑐𝑐 = 2 = 1/3 
𝑃𝑃(𝑥𝑥|𝑐𝑐 = 1) “o” 
𝑃𝑃(𝑥𝑥|𝑐𝑐 = 2) “+” 
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𝑐𝑐 = 1 

𝑐𝑐 = 2 



Fitting Mixture Models:  
Expectation Maximization 
Choose the number of mixture components 𝐾𝐾 
Create a matrix 𝑅𝑅 of dimension 𝐾𝐾 × 𝑁𝑁. This will 
represent 𝑃𝑃 𝑐𝑐𝑖𝑖 = 𝑘𝑘 𝑥𝑥𝑖𝑖 = 𝑅𝑅 𝑘𝑘, 𝑖𝑖  
This is called the “membership probability”. The probability 

that data point 𝑖𝑖 was generated by component 𝑘𝑘 
Randomly initialize 𝑅𝑅 𝑘𝑘, 𝑖𝑖 ∈ (0,1) subject to the 
constraint that ∑ 𝑅𝑅[𝑘𝑘, 𝑖𝑖]𝑘𝑘 = 1 
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EM Algorithm Main Loop 
𝑀𝑀 step: Maximum likelihood estimation of the model 
parameters using the data 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁 and 𝑅𝑅 
𝑃𝑃� 𝑐𝑐 = 𝑘𝑘 ≔ 1

𝑁𝑁
∑ 𝑃𝑃(𝑐𝑐𝑖𝑖 = 𝑘𝑘|𝑥𝑥𝑖𝑖)𝑖𝑖  

 �̂�𝜇𝑘𝑘 ≔
1

𝑁𝑁 𝑃𝑃� 𝑐𝑐=𝑘𝑘
∑ 𝑃𝑃 𝑐𝑐𝑖𝑖 = 𝑘𝑘 𝑥𝑥𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖  

Σ�𝑘𝑘 ≔
1

𝑁𝑁 𝑃𝑃� 𝑐𝑐=𝑘𝑘
∑ 𝑃𝑃 𝑐𝑐𝑖𝑖 = 𝑘𝑘 𝑥𝑥𝑖𝑖 𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖⊤𝑖𝑖  

𝐸𝐸  step: Re-estimate 𝑅𝑅 
𝑅𝑅 𝑘𝑘, 𝑖𝑖 ≔ 𝑃𝑃� 𝑐𝑐 = 𝑘𝑘 Normal 𝑥𝑥𝑖𝑖 �̂�𝜇𝑘𝑘 ,Σ�𝑘𝑘  
𝑅𝑅 𝑘𝑘, 𝑖𝑖 ≔ 𝑅𝑅[𝑘𝑘, 𝑖𝑖]/∑ 𝑅𝑅 𝑘𝑘, 𝑖𝑖𝑘𝑘  
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Results on Our Example 
[R mclust package] 
Estimates 
mixing proportions 
 (0.649, 0.351) 

means:  
 (2.014, 1.967) 
 (−0.631,−0.957) 

True values 
Mixing proportions: 
 (0.667, 0.333) 

Means: 
 (2.000,2.000) 
 (−1.000,−1.000) 
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Mixture Model Summary 
Can fit very complex distributions 
EM is a local search algorithm 
Different random initializations can find different fitted 

models 
There are some new moment-based methods that find the 

global optimum 
Difficult to choose the number of mixture components 
There are many heuristics for this 
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Kernel Density Estimation 
Define a mixture model with one mixture component 
for each data point 
𝑃𝑃� 𝑥𝑥 = 1

𝑁𝑁
∑ 𝐾𝐾 𝑥𝑥 − 𝑥𝑥𝑖𝑖 ,𝜎𝜎2𝑁𝑁
𝑖𝑖=1  

Often use a Gaussian Kernel 𝐾𝐾 𝑥𝑥,𝜎𝜎2 = 1
2𝜋𝜋𝜎𝜎

exp − 𝑥𝑥2

2𝜎𝜎2
 

Often use a fixed scale 𝜎𝜎2. The scale is also called the 
“bandwidth” 
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One-Dimensional Example 
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Design Decisions 
Choice of Kernel: generally not important as long as 
it is local 
Choice of bandwidth is very important 
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Challenges 
KDE in high dimensions suffers from the “Curse of 
Dimensionality” 
The amount of data required to achieve a desired 
level of accuracy scales exponentially with the 
dimensionality 𝑑𝑑 of the problem: exp 𝑑𝑑+4

2
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Factoring the Joint Density into 
Conditional Distributions 
Let 𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑  be a vector of random variables. 
We wish to model the joint distribution 𝑃𝑃(𝑥𝑥).  
By the chain rule of probability, we can write this as 
𝑃𝑃 𝑥𝑥 = 𝑃𝑃 𝑥𝑥1 𝑃𝑃 𝑥𝑥2 𝑥𝑥1 𝑃𝑃 𝑥𝑥3 𝑥𝑥1, 𝑥𝑥2 ⋯𝑃𝑃 𝑥𝑥𝑑𝑑 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑−1  
We can model 𝑃𝑃 𝑥𝑥1  using any 1-D method (e.g., 
KDE).  
We can model each conditional distribution using 
regression methods 
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Linear Regression = Conditional 
Density Estimation 
Let x = 𝑥𝑥1, … , 𝑥𝑥𝐽𝐽  be the predictor variables and 𝑦𝑦 be 
the response variable 
Standard least-squares linear regression models the 
conditional probability distribution was 
𝑃𝑃 𝑦𝑦 𝑥𝑥 ~Normal 𝑦𝑦;  𝜇𝜇 𝑥𝑥 ,𝜎𝜎2  
where 𝜇𝜇 𝑥𝑥 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + ⋯+ 𝛽𝛽𝐽𝐽𝑥𝑥𝐽𝐽 
and 𝜎𝜎2 is a fitted constant 
Neural networks trained to minimize squared error 
model the mean as 𝜇𝜇 𝑥𝑥 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑥𝑥;𝑊𝑊 , where 𝑊𝑊 are 
the weights of the neural network 
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Deep Neural Networks for Density 
Estimation 
Masked Auto-Regressive Flow (Papamarkarios, 2017) 
Apply the chain rule of probability 

𝑃𝑃 𝑥𝑥𝑗𝑗 𝑥𝑥1:𝑗𝑗−1 = Normal 𝑥𝑥𝑗𝑗; 𝜇𝜇𝑗𝑗 , exp𝛼𝛼𝑗𝑗
2  where 

 𝜇𝜇𝑗𝑗 = 𝑓𝑓𝑗𝑗 𝑥𝑥1:𝑗𝑗−1  and 𝛼𝛼𝑗𝑗 = 𝑔𝑔𝑗𝑗 𝑥𝑥1:𝑗𝑗−1  are implemented by neural 
networks 

Re-parameterization trick for sampling 𝑥𝑥𝑗𝑗~𝑃𝑃 𝑥𝑥𝑗𝑗 𝑥𝑥1:𝑗𝑗−1  
 Let 𝑢𝑢𝑗𝑗~Normal(0,1) 
 𝑥𝑥𝑗𝑗 = 𝑢𝑢𝑗𝑗 exp𝛼𝛼𝑗𝑗 + 𝜇𝜇𝑗𝑗  
 (rescale by the standard deviation and displace by the mean) 
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Transformation View 
Equivalent model: 𝐮𝐮~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝐮𝐮; 0, 𝐼𝐼) is a vector of 𝐽𝐽 
standard normal random variates 
𝐱𝐱 = 𝐹𝐹(𝐮𝐮) transforms those random variates into the 
observed data 
To compute 𝑃𝑃(𝐱𝐱) we can invert this function and 
evaluate Normal 𝐹𝐹−1 𝑥𝑥 ; 0, 𝐼𝐼  “almost” 

𝑃𝑃 𝑥𝑥 = Normal 𝐹𝐹−1 𝑥𝑥 ; 0, 𝐼𝐼 det 𝜕𝜕𝐹𝐹−1 𝑥𝑥
𝜕𝜕𝑥𝑥

 
This ensures that 𝑃𝑃 integrates to 1 
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Derivative of 𝐹𝐹−1 is Simple 
Because of the “triangular” structure created by the 
chain rule,  

 det 𝜕𝜕𝐹𝐹−1 𝑥𝑥
𝜕𝜕𝑥𝑥

= exp −∑ 𝛼𝛼𝑗𝑗𝑗𝑗  
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𝐹𝐹 is Easy to Invert 
𝑢𝑢𝑗𝑗 = 𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑗𝑗 exp −𝛼𝛼𝑗𝑗  
where 𝜇𝜇𝑗𝑗 = 𝑓𝑓𝑗𝑗 𝑥𝑥1:𝑗𝑗−1  and 𝛼𝛼𝑗𝑗 = 𝑔𝑔𝑗𝑗 𝑥𝑥1:𝑗𝑗−1  
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Masked Auto-Regressive Flow 

“mask” ensures that 𝑓𝑓𝑗𝑗 and 𝑔𝑔𝑗𝑗  only depend on 𝑥𝑥1:𝑗𝑗−1 
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Stacking MAFs 
One MAF network is often not sufficient 
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True Density Fitted Density from 
single MAF network 

Distribution of the 𝐮𝐮 
values 



Stack MAFs until the 𝐮𝐮 values are 
Normal(0,I) 
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True Density Fitted Density from 
stack of 5 MAFs 

Distribution of the 𝐮𝐮 
values 



Test Set Log Likelihood 

35 



Outline 
Definition and Motivations 
Density Estimation 
Parametric Density Estimation 
Mixture Models 
Kernel Density Estimation 
Neural Density Estimation 
Anomaly Detection 
Distance-based methods 
 Isolation Forest and LODA 
RPAD theory 
 

 
36 



Part 2: Other Anomaly Detection 
Approaches 
Do we need accurate density estimates to do 
anomaly detection? 
Maybe not 
Rank points proportional to − log𝑃𝑃(𝑥𝑥) 
Detect low-probability outliers 
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Distance-Based Anomaly Detection 
Assume a distance metric ‖𝑥𝑥 − 𝑦𝑦‖ between any two 
data points 𝑥𝑥 and 𝑦𝑦 
𝐴𝐴(𝑥𝑥) = anomaly score = distance to 𝑘𝑘-th nearest data 
point 
Points in empty regions of the input space are likely 
to be anomalies 
 
There are many refinements of this basic idea 
Learned distance metrics can be helpful 
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Isolation Forest [Liu, Ting, Zhou, 2011] 

Construct a fully random 
binary tree 
 choose attribute 𝑗𝑗 at random 
 choose splitting threshold 𝜃𝜃 

uniformly from 
min 𝑥𝑥⋅𝑗𝑗 , max 𝑥𝑥⋅𝑗𝑗  

 until every data point is in its 
own leaf 
 let 𝑑𝑑(𝑥𝑥𝑖𝑖) be the depth of point 𝑥𝑥𝑖𝑖 

 repeat 100 times 
 let �̅�𝑑(𝑥𝑥𝑖𝑖) be the average depth 

of 𝑥𝑥𝑖𝑖 

 𝐴𝐴 𝑥𝑥𝑖𝑖 = 2
−

𝑑𝑑� 𝑥𝑥𝑖𝑖
𝑟𝑟 𝑥𝑥𝑖𝑖  

 𝑁𝑁(𝑥𝑥𝑖𝑖) is the expected depth  
 

39 

𝑥𝑥⋅𝑗𝑗          𝑥𝑥⋅𝑗𝑗 > 𝜃𝜃 

𝑥𝑥⋅2 > 𝜃𝜃2 𝑥𝑥⋅8 > 𝜃𝜃3 

𝑥𝑥⋅3 > 𝜃𝜃4 𝑥𝑥⋅1 > 𝜃𝜃5 

𝑥𝑥𝑖𝑖 



LODA: Lightweight Online Detector of 
Anomalies [Pevny, 2016]   
Π1, … ,Π𝑀𝑀 set of 𝑀𝑀 
sparse random 
projections 
𝑓𝑓1, … , 𝑓𝑓𝑀𝑀 
corresponding 1-
dimensional 
density estimators 
𝑆𝑆 𝑥𝑥 =
1
𝑀𝑀
∑ − log 𝑓𝑓𝑚𝑚(𝑥𝑥)𝑚𝑚   

average “surprise” 

-4 -2 0 2 4

-4
-2

0
2

4

x

y *
*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

**

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

NewRelic 40 



LODA: Lightweight Online Detector of 
Anomalies [Pevny, 2016]   
Π1, … ,Π𝑀𝑀 set of 𝑀𝑀 
sparse random 
projections 
𝑓𝑓1, … , 𝑓𝑓𝑀𝑀 
corresponding 1-
dimensional 
density estimators 
𝑆𝑆 𝑥𝑥 =
1
𝑀𝑀
∑ − log 𝑓𝑓𝑚𝑚(𝑥𝑥)𝑚𝑚   
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LODA: Lightweight Online Detector of 
Anomalies [Pevny, 2016]   
Π1, … ,Π𝑀𝑀 set of 𝑀𝑀 
sparse random 
projections 
𝑓𝑓1, … , 𝑓𝑓𝑀𝑀 
corresponding 1-
dimensional 
density estimators 
𝑆𝑆 𝑥𝑥 =
1
𝑀𝑀
∑ − log 𝑓𝑓𝑚𝑚(𝑥𝑥)𝑚𝑚   

average “surprise” 
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Benchmarking Study 
[Andrew Emmott] 

Most AD papers only evaluate on a few datasets 
Often proprietary or very easy (e.g., KDD 1999) 
Research community needs a large and growing 
collection of public anomaly benchmarks 

[Emmott, Das, Dietterich, Fern, Wong, 2013; KDD ODD-2013]  
[Emmott, Das, Dietterich, Fern, Wong. 2016; arXiv 1503.01158v2] 
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Benchmarking Methodology 
Select 19 data sets from UC Irvine repository 
Choose one or more classes to be “anomalies”; the 
rest are “nominals” 
Manipulate 
Relative frequency 
Point difficulty  
 Irrelevant features 
Clusteredness 
20 replicates of each configuration 
Result: 25,685 Benchmark Datasets 
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Algorithms 
Density-Based Approaches 
RKDE: Robust Kernel Density Estimation (Kim & Scott, 2008) 
EGMM: Ensemble Gaussian Mixture Model (our group) 
Quantile-Based Methods 
OCSVM: One-class SVM (Schoelkopf, et al., 1999) 
SVDD: Support Vector Data Description (Tax & Duin, 2004) 
Neighbor-Based Methods 
 LOF: Local Outlier Factor (Breunig, et al., 2000) 
ABOD: kNN Angle-Based Outlier Detector (Kriegel, et al., 2008) 
Projection-Based Methods 
 IFOR: Isolation Forest (Liu, et al., 2008) 
 LODA: Lightweight Online Detector of Anomalies (Pevny, 2016) 
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Analysis 
Linear ANOVA 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑐𝑐 ~ 𝑁𝑁𝑓𝑓 + 𝑝𝑝𝑑𝑑 + 𝑐𝑐𝑁𝑁 + 𝑖𝑖𝑁𝑁 + 𝑁𝑁𝑚𝑚𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁𝑔𝑔𝑁𝑁 
 rf: relative frequency 
 pd: point difficulty 
 cl: normalized clusteredness 
 ir: irrelevant features 
 mset: “Mother” set 
 algo: anomaly detection algorithm 

Validate the effect of each factor 
Assess the algo effect while controlling for all other 
factors 
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Algorithm Comparison 
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How Much Training Data is Needed? 
We looked at learning curves for anomaly detection  
On most benchmarks, we only need a few thousand 
points to get good detection rates 

That is certainly better than exp 𝑑𝑑+4
2

 

What is going on? 
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Rare Pattern Anomaly Detection 
[Siddiqui, et al.; UAI 2016] 

A pattern ℎ:ℜ𝑑𝑑 → {0,1} is an indicator function for a 
measurable region in the input space 
Examples: 
 Half planes 
 Axis-parallel hyper-rectangles in −1,1 𝑑𝑑 

A pattern space ℋ is a set of patterns (countable or 
uncountable) 
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Rare and Common Patterns 
Let 𝜇𝜇 be a fixed measure over ℜ𝑑𝑑 
 Typical choices:  
 uniform over −1, +1 𝑑𝑑 
 standard Gaussian over ℜ𝑑𝑑 

𝜇𝜇(ℎ) is the measure of the pattern defined by ℎ 
Let 𝑝𝑝 be the “nominal” probability density defined on ℜ𝑑𝑑 
(or on some subset) 
𝑝𝑝(ℎ) is the probability of pattern ℎ 
A pattern ℎ is 𝜏𝜏-rare if  

𝑓𝑓 ℎ =
𝑝𝑝 ℎ
𝜇𝜇 ℎ

≤ 𝜏𝜏 

Otherwise it is 𝜏𝜏-common 
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Rare and Common Points 
A point 𝑥𝑥 is 𝜏𝜏-rare if there exists a 𝜏𝜏-rare ℎ such that 
ℎ 𝑥𝑥 = 1 
Otherwise a point is 𝜏𝜏-common 
 
Goal: An anomaly detection algorithm should output 
all 𝜏𝜏-rare points and not output any 𝜏𝜏-common points 
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PAC-RPAD 
Algorithm 𝒜𝒜 is PAC-RPAD for  
 pattern space ℋ,  
 measure 𝜇𝜇,  
 parameters 𝜏𝜏, 𝜖𝜖, 𝛿𝛿  

if for any probability density 𝑝𝑝 and any 𝜏𝜏, 𝒜𝒜 draws a sample from 𝑝𝑝 
and with probability 1 − 𝛿𝛿  
detects all 𝜏𝜏-rare points and rejects all (𝜏𝜏 + 𝜖𝜖)-common points in the 
sample 
 
 𝜖𝜖 allows the algorithm some margin for error 
 If a point is between 𝜏𝜏-rare and 𝜏𝜏 + 𝜖𝜖 -common, the algorithm can 

treat it arbitrarily 
Running time polynomial in 1

𝜖𝜖
, 1
𝛿𝛿
, and 1

𝜏𝜏
, and some measure of the 

complexity of ℋ 
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RAREPATTERNDETECT 
Draw a sample of size 𝑁𝑁(𝜖𝜖, 𝛿𝛿) from 𝑝𝑝 
Let �̂�𝑝(ℎ) be the fraction of sample points that satisfy 
ℎ 

Let 𝑓𝑓 ℎ = 𝑝𝑝� ℎ
𝜇𝜇 ℎ

 be the estimated rareness of ℎ 

A query point 𝑥𝑥𝑞𝑞 is declared to be an anomaly if there 
exists a pattern ℎ ∈ ℋ such that ℎ 𝑥𝑥𝑞𝑞 = 1 and 
𝑓𝑓 ℎ ≤ 𝜏𝜏. 
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Results 
Theorem 1: For any finite pattern space ℋ, 
RAREPATTERNDETECT is PAC-RPAD with sample 
complexity  

𝑁𝑁 𝜖𝜖, 𝛿𝛿 = 𝑂𝑂
1
𝜖𝜖2

log ℋ + log
1
𝛿𝛿

 

Theorem 2: For any pattern space ℋ with finite VC 
dimension 𝒱𝒱ℋ, RAREPATTERNDETECT is PAC-RPAD 
with sample complexity  

𝑁𝑁 𝜖𝜖, 𝛿𝛿 = 𝑂𝑂
1
𝜖𝜖2

𝒱𝒱ℋ log
1
𝜖𝜖2

+ log
1
𝛿𝛿
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Intuition: Surround the data with rare 
patterns 

55 

If a query point 
hits one of the 
rare patterns, 
declare it to be an 
anomaly 
 
We only estimate 
the probability of 
each pattern, not 
the full density 



Isolation RPAD 
Grow an isolation forest 
Each tree is only grown to depth 𝑘𝑘 
Each leaf defines a pattern ℎ 
𝜇𝜇 is the volume (Lebesgue measure) 
Compute 𝑓𝑓(ℎ) for each leaf 
Details 
Grow the tree using one sample 
Estimate 𝑓𝑓 using a second sample 
Score query point(s) 

𝑥𝑥1 < 0.2 

𝑥𝑥2 < 0.6 

𝑥𝑥1 < 0.5 

ℎ1 

ℎ2 

ℎ3 ℎ4 
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Results: Covertype 

PatternMin is slower, but eventually beats IFOREST 
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Results: Particle  

IFOREST is much better better 
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Results: Shuttle 

PatternMin is consistently beats iForest for 𝑘𝑘 > 1 
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RPAD Conclusions 
The PAC-RPAD theory seems to capture the 
behavior of algorithms such as IFOREST 
It is easy to design practical RPAD algorithms 
Theory requires extension to handle sample-
dependent pattern spaces ℋ 
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Summary 
Density Estimation 
Parametric Density Estimation 
Mixture Models 
Kernel Density Estimation 
Neural Density Estimation 
Anomaly Detection 
Distance-based methods 
 Isolation Forest and LODA 
RPAD theory 
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