



# Using spatial features of human settlement to predict epidemic properties

Rahman Sanya

# the problem



# 2-tier hierarchical population mobility in Uganda in 2013

## the goal

Understand how settlement characteristics implicate observed spatial epidemic pattern

#### Features we want to explore

 urbanization, accessibility, mobility flux, connectivity, and population density

#### In this talk: urbanization

- Look for relationship between urban density & spatial epidemic dynamic
- How best to investigate potential relationship





# study area



- Four contiguous LAU 4's
- Pop size 4,524,073
- Area size 5,114.3 km<sup>2</sup>
- 58.95 % urban
- Built-up, bare soil, vegetation, water

#### data sources

#### Satellite imagery (Landsat 8) from USGS

- 11 bands, cloud < 10%, 30m spatial res

Geospatial dataset (OSM) from Geofabrik

road network, building blocks

Disease case (DHMIS2)

- TB, HIV/AIDS

## general approach

- Map settlements, quantify urban
- Classify settlements into rural or urban
  - urban is 'a place dominated by built environment'
- Model relationship between urban concentration and disease dynamics

# Extract built-up footprint



# built-up footprint



# urban density vs. case distribution



# road density



we want to...

# relate features to epidemic properties

Using mutual information *I*,

$$I(X;Y)=H(X)+H(Y)-H(X,Y)$$

where

$$H(t) = \frac{-1}{\log V} \sum_{i} \gamma_{j}(t) \log \gamma_{j}(t)$$

#### extract communities

#### Using agglomerative hierarchical clustering

$$\chi_{mn}^{o} = \frac{J_{(mn)}}{\min(k_m, k_n) + 1 - \theta(A_{mn})}$$

#### where

 $X^o$  is topological overlap matrix  $J_{(mn)}$  is no. of shared neighbors of nodes m, n k is node degree  $\Theta(A_{mn})$  is Heaviside step function

#### relate pattern across nodes

Node pairs expected to have similar epidemic properties if they

- share neighbors
- have direct link between them
- have comparable spatial features

## relate pattern across nodes

#### Epidemic similarity between nodes *m*, *n*

$$\phi_{mn} = \frac{\rho_m}{\rho_n} = \frac{\rho_n}{\rho_m} \qquad \rho_m \approx \rho_n; \vartheta_m \approx \vartheta_n$$

$$\rho = \sum_{n=1}^{i_m} i_n \quad \text{and} \quad i(t) = \frac{I(t)}{N}$$

 $\phi = 1$  if nodes m, n have similar epidemic properties  $\phi > 1$ ;  $\phi < 1$  otherwise

#### conclusion

Its early days to conclude

 However, our goal is to explore predictive potential of five spatial settlement features for epidemic modeling in coupled human population systems