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Energy Disaggregation Problem.

o W

FIGURE — Huss A.(2015)

survey-paper :https://arxiv.org/abs/1703.00785

NMAIST

A source separation problem (signal
processing problem) = Separate
aggregate power signal

yy= Y x+o()

into all source (appliance) signals.
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Hybrid DNN-HMM
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NILM Algorithm Development

State-of-the art NILM algorith : Hidden Markov Model (HMM) vs
Deep neural networks (DNN)

HMM ! DNN?2

+ suitable for controlled multi-state loads + easier to generalize to similar appliances
+ easy to train and can work in real-time +very powerful

- difficult to generalize to similar appliances - require lots of data for model training

- limited to few appliances - training sensitive to hyperparameters

Open-lssue : Combine DNN and HMM for real-time and generalized
energy disaggregation.

1. Makonin S., eta.l (2015), Exploiting HMM Sparsity to Perform Online
Real-Time Nonintrusive Load Monitoring. A
2. Kelly J. eta.l (2015), Neural NILM : Deep Neural Networks Applied to ,,’,kﬁ,‘/g
Energy Disaggregation. -
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What Next

Hybrid DNN-HMM model
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Hybrid CNN-HMM

Appliance Modeling

For each appliance k, the HMM

parameters are :

AR = (70, A0 oK)
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Hybrid CNN-HMM

Appliance Modeling

] o]
For each appliance k, the HMM fl\ (J\
parameters are : = St i
A0 = (70 A gk) B} s Cnn =
[enier] [Fenaer] [enier]
[ mﬂde:\ Tayer | [ mme:u Tayer | [ mﬂde:\ Tayer |

7(K) = the initial probability of an
. . [input Feature [input Feature | [input Feature |
appliance state s¢(1) attime t = 1. Adi s A

At

o AW = P(s(t) = ilsk(t—1) = j) =

the transition probability.
* 00 ~ N(ps (1) 05 () = the

appliance model.
e B® = P(Ayi|skp =)) =

estimated from CNN = %. 2
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Hybrid CNN-HMM

Appliance Modeling

For each appliance k, the HMM
parameters are :

A = (20 AG) gk) B}

)

7(K) = the initial probability of an
appliance state s¢(1) attime t = 1.
AW = P(s(t) = ilsk(t—1) = j) =
the transition probability.

00 ~ N (1, (1) Os,(1)) = the
appliance model.

B® = P(Ayilskin = J) =

_ P(s(]Ay)
estimated from CNN = —g¢5.
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The CNN gets a window of 2B + 1 of input
features such that : Ay = [Aymax(0,t —
B),...Ayt, .- AYmin(T, t + B)]
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Hybrid CNN-HMM :Learning and Inference

Joint probability probability of all sequences :

P(Y,AY, Si\) = 700, - BL,) - POK(1) < yilsi(1), )

T

[T As0),sct-1) - POk (1) < yels(t), A) - B,y
t—2
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Hybrid CNN-HMM :Learning and Inference

Joint probability probability of all sequences :

P(Y,AY, Si\) = 700, - BL,) - POK(1) < yilsi(1), )

;
[T As0),sct-1) - POk (1) < yels(t), A) - B,y
t—2

Training : train CNN-HMM

e Bauch-welch algorithm under  |nference and Signal Extraction :
MLE to train initial GMM-HMM.

e Stochastic Gradient Descent
(SDG) to train initial CNN.

e Embedded-Viterbi-algorithm to e Power estimation : X (t) = s, (n

e virtebi algorithm :
8k = argmax[P(Y,AY, Sk|\)]
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CNN Appliance Recoginition
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Appliance recognition

Appliance recognition is an important sub-task of the NILM
problem.

Power (k)

s stumedon - e Several approaches for this
R sub-task?, ¢
L e Deep-learning have received

little attention.

3. Gao, Jingkun, et al (2015). "A feasibility study of automated plug- load
identification from high-frequency measurements.” p
4. Karim Barsim, et al 2016. "Neural Neural Network Ensembles to ey
Real-time Identification of Plug-level Appliance Measurement"
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Objective

Goal Appliance recognition :
Apply CNN to recognize the labeled appliances once they are
switched on.

Data : Plug load Appliance Identification Dataset (PLAID °).

e 55 households in USA e sub-metered on events of
the appliances (1074 total).

11 different appliances
‘ PP e Sampled at 30 kHz.
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5. http ://plaidplug.com/
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Appliance Signature

VI Binary Image Voltage-Current (V1) image feature during the

steady state operation ©.
e Obtained by converting the VI trajectories into binary image.
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Model Definition

K=32
F=6 2x2size ()] eaunits O
s=1
o 0o
~ 12 Classes
RelU RelU e
RelU 0.25 dropout o) ReLU A - O 0O O
| 0.25 dropout Softmax
O O
- - Output layer
Input Image —
16x 16 ) —~
()
Conv1 Conv2 Max Pooling layer Dense Layer 1 Dense Layer 2
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Experment

e Training : Leave-house-out
cross validation.

e Metrics : Precision (PR),
Recall (RE), and F-Measure
(F-1 score).

TP
PR= Tp 1 FP M
TP
AE= 75 FN @
~ 2x(PRxRE)
u="prvre

NMAIST

where :

e TP = correct claim the
detected event was
triggered by an appliance.

e FP = incorrect claim that
detected event was
triggered by an appliance.

e FN = indicates that
appliance used was not
identified.
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Results

Evaluation Results
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code : https://github.com/sambaiga/cnn-appliance-detector
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Data Set Development
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Energy Data set Development

Develop tool and establish resource pertaining to residential
electrical energy consumption-data set in Tanzania.

e RF-based WSN for individual
appliances and aggregate
power monitoring

e LUKU-pulse-sensor to collect !
aggregate power consumption
using LED pulse found on
existing LUKU meter.

e Experiment the tool in some
buildings for one year
=-establishment of the energy
consumption data-set.

SensorDataLogger

Aggregat
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Conclusion
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Conclusion

Open Challenges & Opportunities :

¢ Data, Data, Data
NILM in renewable sources = Improve battery energy
storage.
NILM to predict electrical fires accidents or solve electricity
theft problem.
Develop realistic simulators for simulating disaggregated
electricity data.
Explore different Deep Learning architecture for NILM
problem.
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THANK YOU
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