
Introduction to Reinforcement Learning (RL)

Billy Okal!
Apple Inc.

What is RL

Reinforcement learning is a paradigm for learning to make a good
sequence of decisions

Reinforcement Learning in Context

4

Unsupervised
Learning

Supervised
Learning

Labels for all samples No labels

Reinforcement
Learning

Sparse & delayed labels

Reinforcement Learning in Context

5

Unsupervised
Learning

Supervised
Learning

Reinforcement
Learning

Data!

Optimization

Data!

Optimization

Data!

Optimization!

Long-term
consequences

Exploration

RL Protocol

1. An agent takes an action in an
environment!

2. The environment responds with a
feedback signal!

3. The agent uses the feedback to
decide on future actions

6

Example applications of RL

" Games — Go, video console games

" Robotics — drone, mobile robot navigation

" Medicine — administering trials

" Dialogue systems, e.g. chatbots

" Personalized web — internet ads, news feeds

" Finance — trading

" Process optimization — DRAM, elevator dispatch
7

Example applications of RL

" TD-Gammon for the game
backgammon

" Early 90s

8

366 CHAPTER 16. APPLICATIONS AND CASE STUDIES

white pieces move

 counterclockwise

1 2 3 4 5 6 7 8 9 10 11 12

18 17 16 15 14 13192021222324

 black pieces

move clockwise

Figure 16.1: A backgammon position

For example, he could move two pieces from the 12 point, one to the 17 point, and
one to the 14 point. White’s objective is to advance all of his pieces into the last
quadrant (points 19–24) and then o↵ the board. The first player to remove all his
pieces wins. One complication is that the pieces interact as they pass each other
going in di↵erent directions. For example, if it were black’s move in Figure 16.1,
he could use the dice roll of 2 to move a piece from the 24 point to the 22 point,
“hitting” the white piece there. Pieces that have been hit are placed on the “bar” in
the middle of the board (where we already see one previously hit black piece), from
whence they reenter the race from the start. However, if there are two pieces on a
point, then the opponent cannot move to that point; the pieces are protected from
being hit. Thus, white cannot use his 5–2 dice roll to move either of his pieces on
the 1 point, because their possible resulting points are occupied by groups of black
pieces. Forming contiguous blocks of occupied points to block the opponent is one
of the elementary strategies of the game.

Backgammon involves several further complications, but the above description
gives the basic idea. With 30 pieces and 24 possible locations (26, counting the
bar and o↵-the-board) it should be clear that the number of possible backgammon
positions is enormous, far more than the number of memory elements one could
have in any physically realizable computer. The number of moves possible from
each position is also large. For a typical dice roll there might be 20 di↵erent ways
of playing. In considering future moves, such as the response of the opponent, one
must consider the possible dice rolls as well. The result is that the game tree has an
e↵ective branching factor of about 400. This is far too large to permit e↵ective use
of the conventional heuristic search methods that have proved so e↵ective in games
like chess and checkers.

On the other hand, the game is a good match to the capabilities of TD learning
methods. Although the game is highly stochastic, a complete description of the
game’s state is available at all times. The game evolves over a sequence of moves
and positions until finally ending in a win for one player or the other, ending the
game. The outcome can be interpreted as a final reward to be predicted. On the

Example applications of RL

" AlphaGo

" Very recent

" Combines RL with other
learning approaches

9

16.7. MASTERING THE GAME OF GO 391

blocked (Figure 16.11 right). Other rules are needed to prevent inÞnite capturing/re-
capturing loops. The game ends when neither player wishes to place another stone.
These rules are simple, but they produce a very complex game that has had wide
appeal for thousands of years.

Figure 16.10: A Go board conÞguration.

Figure 16.11: Go capturing rule. Left: the three white stones are not surrounded because
point X is unoccupied. Middle: if black places a stone on X, the three white stones are
captured and removed from the board. Right: if white places a stone on point X Þrst, the
capture is blocked.

Methods that produced strong play for other games, such as chess, have not worked
as well for Go. The search space for Go is signiÞcantly larger than that of chess
because Go has a larger number of legal moves per position than chess (⇡ 250 versus
⇡ 35) and Go games tend to involve more moves than chess games (⇡ 150 versus
⇡ 80). But the size of the search space is not the major factor that makes Go so
di�cult. Exhaustive search is infeasible for both chess and Go, and Go on smaller
boards, e.g., 9⇥ 9, has proven to be di�cult as well. Experts agree that the major
stumbling block to creating stronger-than-amateur Go programs is the di�culty of
deÞning an adequate position evaluation function. A good evaluation function allows
search to be truncated at a feasible depth by providing relatively easy-to-compute
predictions of what deeper search would likely yield. According to M¬uller (2002):
ÒNo simple yet reasonable evaluation function will ever be found for Go.Ó A major
step forward was the introduction of MCTS into Go programs, which led to a series of
signiÞcant advances in playing skill. The strongest programs at the time of AlphaGoÕs
development all used MCTS. But master-level skill remained elusive.

Characteristics of RL tasks

" Interaction!

" When task requires making a sequence of decisions

" There is feedback resulting from the choice of state and/or actions

" Data is in the form of trajectories

10

Mathematical Formalism

Markov Decision Processes | Notation

" States:

" Actions:

" Transition/dynamics:

" Feedback (reward, cost):

" Note: time is usually assumed to evolve in discrete steps
12

S = {s, s!} St, St+1

A = {a, a!} At, At+1

Pr(St+1 = s! | St = s,At = a)

Pr(Rt = r | St = s)
Pr(Rt = r | St = s,At = a)
Pr(Rt = r | St = s, At = a, St +1 = s!)

reward(state)

reward(state, action)

reward(state, action, next_state)

transition(state, action)

Markov Decision Processes | Building Blocks

" Return: the sum of rewards accumulated

" Discounting: future rewards are worth less than current ones

" Policy : a prescription for actions

" Value of a state:

" State-value function (Q-function):

13

! (s)

� ! [0, 1]

! : S ⇥A �! [0, 1]

G = Rt+0 + Rt+1+ , . . . ,+Rt+H

G = ! 0Rt+0 + ! 1Rt+1+, . . . ,+! HRt+H =
1!

k=0

! kRt+k+1

V ! (s) = E! [G | St = s]

Q! (s, a) = E! [G | St = s, At = a]

Markov Decision Processes | Prediction

" How to estimate the value of a policy:

" Monte Carlo — average the values of states as the agent visits them.

" For infinite samples (state visitation) converges to the true value

" Dynamic programming — exploits the recursive relation between
successive state values,

" Backup values from future states to the present state.

14

V ⇡(s) V ⇡(s!)

V ! (s) = E! [Rt + ! V ! (s!) | St = s,At = a, St +1 = s!]

Markov Decision Processes | Assessment/Evaluation

" Given two policies,

" Policy 1 is better than policy 2 iff

" What is the best/optimal policy?

" Has corresponding to the optimal value and Q functions,

" Extract policy from value or Q-function

15

⇡1,⇡2

V ⇡1(s) > V ⇡2(s) ! s " S

V ⇤
(s) = max

! 2⇧
V !

(s)

⇡!
(s) = argmax

a" A
Q!

(s, a)

Q!
(s, a) = max

! " ⇧
Q!

(s, a)

Additional RL Terminologies

" Episodic vs continuous

" On-policy vs off-policy

" Greedy — take the action providing maximum gain

16

Markov Decision Processes | Model-based vs Model-free

" Model-based: Collect data and learn reasonable approximations of T and R
then apply value iteration to find the optimal value function, from which the
policy to use is then extracted.

" Model-free: Directly estimate the value function or the optimal policy.

17

Planning & Learning

Markov Decision Processes | Planning (1)

" Given a full MDP model, find the optimal policy (or value function)

" Value iteration algorithm

19

90 CHAPTER 4. DYNAMIC PROGRAMMING

Value iteration

Initialize array V arbitrarily (e.g., V (s) = 0 for all s ! S+)

Repeat
! " 0
For each s ! S:

v " V (s)
V (s) " maxa

!
s0,r p(s0, r |s, a)

"
r + ! V (s0)

#

! " max(! , |v # V (s)|)
until ! < " (a small positive number)

Output a deterministic policy, # $ #⇤, such that
#(s) = argmaxa

!
s0,r p(s0, r |s, a)

"
r + ! V (s0)

#

in a sweep. The box shows a complete algorithm with this kind of termination
condition.

Value iteration e" ectively combines, in each of its sweeps, one sweep of policy
evaluation and one sweep of policy improvement. Faster convergence is often achieved
by interposing multiple policy evaluation sweeps between each policy improvement
sweep. In general, the entire class of truncated policy iteration algorithms can be
thought of as sequences of sweeps, some of which use policy evaluation backups and
some of which use value iteration backups. Since the max operation in (4.10) is the
only di" erence between these backups, this just means that the max operation is
added to some sweeps of policy evaluation. All of these algorithms converge to an
optimal policy for discounted finite MDPs.

Example 4.3: GamblerÕs Problem A gambler has the opportunity to make bets
on the outcomes of a sequence of coin flips. If the coin comes up heads, he wins as
many dollars as he has staked on that flip; if it is tails, he loses his stake. The game
ends when the gambler wins by reaching his goal of $100, or loses by running out of
money. On each flip, the gambler must decide what portion of his capital to stake,
in integer numbers of dollars. This problem can be formulated as an undiscounted,
episodic, finite MDP. The state is the gambler’s capital, s ! {1, 2, . . . , 99} and the
actions are stakes, a ! {0, 1, . . . ,min(s,100# s)}. The reward is zero on all transitions
except those on which the gambler reaches his goal, when it is +1. The state-value
function then gives the probability of winning from each state. A policy is a mapping
from levels of capital to stakes. The optimal policy maximizes the probability of
reaching the goal. Let ph denote the probability of the coin coming up heads. If ph

is known, then the entire problem is known and it can be solved, for instance, by
value iteration. Figure 4.3 shows the change in the value function over successive
sweeps of value iteration, and the final policy found, for the case of ph = 0.4. This
policy is optimal, but not unique. In fact, there is a whole family of optimal policies,
all corresponding to ties for the argmax action selection with respect to the optimal

Markov Decision Processes | Planning (2)

" Q-learning: A model free way to find the optimal policy

20

140 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

6.5 Q-learning: O ↵-Policy TD Control

One of the early breakthroughs in reinforcement learning was the development of an
o↵-policy TD control algorithm known as Q-learning (Watkins, 1989), deÞned by

Q(St, At) Q(St, At) + ↵
h
Rt+1 + � max

a
Q(St+1 , a) �Q(St, At)

i
. (6.8)

In this case, the learned action-value function,Q, directly approximates q⇤, the op-
timal action-value function, independent of the policy being followed. This dramat-
ically simpliÞes the analysis of the algorithm and enabled early convergence proofs.
The policy still has an e↵ect in that it determines which stateÐaction pairs are visited
and updated. However, all that is required for correct convergence is that all pairs
continue to be updated. As we observed in Chapter 5, this is a minimal requirement
in the sense that any method guaranteed to Þnd optimal behavior in the general case
must require it. Under this assumption and a variant of the usual stochastic approx-
imation conditions on the sequence of step-size parameters,Q has been shown to
converge with probability 1 to q⇤. The Q-learning algorithm is shown in procedural
form in the box below.

Q-learning: An o↵-policy TD control algorithm

Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

ChooseA from S using policy derived fromQ (e.g., ✏-greedy)
Take action A, observeR, S0

Q(S,A) Q(S,A) + ↵
⇥
R + � maxa Q(S0, a) �Q(S,A)

⇤

S S0

until S is terminal

What is the backup diagram for Q-learning? The rule (6.8) updates a stateÐaction
pair, so the top node, the root of the backup, must be a small, Þlled action node.
The backup is alsofrom action nodes, maximizing over all those actions possible in
the next state. Thus the bottom nodes of the backup diagram should be all these
action nodes. Finally, remember that we indicate taking the maximum of these
Ònext actionÓ nodes with an arc across them (Figure 3.7-right). Can you guess now
what the diagram is? If so, please do make a guess before turning to the answer in
Figure 6.6.

Example 6.6: Cli↵ Walking This gridworld example compares Sarsa and Q-
learning, highlighting the di↵erence between on-policy (Sarsa) and o↵-policy (Q-
learning) methods. Consider the gridworld shown in the upper part of Figure 6.5.
This is a standard undiscounted, episodic task, with start and goal states, and the
usual actions causing movement up, down, right, and left. Reward is�1 on all
transitions except those into the region marked ÒThe Cli↵.Ó Stepping into this region
incurs a reward of�100 and sends the agent instantly back to the start.

Markov Decision Processes | Exploration-Exploitation

" Actions determine which states the agent ends up.

" Trying actions already known to lead to ‘good’ states — exploitation

" Occasionally trying new actions to potentially end up in new states —
exploration

" Exploration gathers new data while exploitation maximizes earnings

" When to stop exploring?

21

Markov Decision Processes | Reward Learning

" Inverse reinforcement learning

" Recover an expert agent’s reward function from traces of its behavior (state,
action trajectories)

" Imitation learning

" Assume that an expert agent is acting optimally, replicate its behavior.

22

Large scale

Markov Decision Processes | Large Models

" In large state and/or action spaces e.g. continuous domain, we use function
approximation to represent the value or Q-functions.

" Choice of function approximation method is crucial

" RBFs, PVFs, Neural networks, etc

" Deep Q networks — use a neural network to approximate Q-function, plus a
few more tricks (experience replay, etc)

24

Going further

Reinforcement Learning | Beyond MDPs

" POMDPs

" Models for uncertainty in observation (states) and control (actions)

" SMDPs

" Additional abstraction over states and actions

" Hierarchy

" Bandits — essentially an MDP with a single state.

26

What next

RL Software | Getting Started

" Environment,

" Examples: Gym

" Algorithms

" VI, PI, TD, Monte Carlo — common implementations found on github.

28

https://gym.openai.com

1. General go to books: https://mitpress.mit.edu/books/reinforcement-learning

2. Emma’s RL course at Stanford: http://web.stanford.edu/class/cs234/syllabus.html

29

References

http://web.stanford.edu/class/cs234/syllabus.html

