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Introduction

I In machine learning applications we seek to fit models that
explain our data
In science, a central task is to develop and compare models to
account for the data that are gathered1- David J. MacKay

I Often we limit our analysis to a family of models governed by
some parameters

I Within this family we seek the “Best” model

I This model generalises well to unseen test data

1MacKay, D. J. (1992). Bayesian interpolation. Neural computation, 4(3),
415-447.



Introduction: Parsimony

I Simpler explanations are to be prefered- Occam’s Razor

I The scientific method:
The existence of simple laws is, then, apparently, to be re-
garded as a quality of nature; and accordingly we may infer
that it is justifiable to prefer a simple law to a more complex
one that fits our observations slightly better.2

2D. Wrinch and H. Jeffreys. XLII. On certain fundamental principles of
scientific inquiry. Philosophical Magazine Series 6, 42(249):369390, 1921.



Introduction: Parsimony
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Introduction: Parsimony

➢ Which of the three inferences is
more probable?

➢ Which is simpler?

[Image credit: Andreas Damianou]



Introduction

I Consider the regression problem where we observe an input
variable x and wish to predict a target variable y .

I Suppose the training data are as shown



Introduction

I Suppose we assume that we can use a polynomial to model
the relationship between x and y

y = w0 + w1x + w2x2 + . . .+ wPxP

=
P∑
i=0

wix
i

I The model has a set of parameters w = [w0, . . . ,wP ]T and we
can write

y = f (x ,w)

I Given a polynomial order P, we learn the parameters w∗ that
best explain the training data



Introduction

I By finding the w∗ that minimizes the square error

E (w) =
1

2

N∑
n=1

(f (xn,w)− yn)2

we obtain the polynomial fit of the data f (x ,w∗)

I E (w) is quadratic in w and has a unique minimum



Introduction

I But what about the order P

I This parameter governs the complexity of the model

I High values of P are more flexible but harder to fit and may
suffer numerical instability especially when data are limited



Introduction

Fit for P = 0



Introduction

Fit for P = 3



Introduction

Fit for P = 9



Model Assessment and Selection

I To determine P, we can monitor the error on a hold-out test
set



Model Assessment and Selection

I If data are plentiful, we can use a data-driven approach

I Divide the data into three parts: training, validation and
testing sets

I The training set is used to fit the model

I The validation set is used for model selection

I The test set is used to estimate the performance on unseen
data



K-fold Cross-Validation

I An alternative approach is to divide the data into K (almost)
equal sized parts

I Use K − 1 parts to fit the model and test the model on the
remaining part

I If K is set to the number of data points, we have
Leave-one-out cross-validation

I One drawback is the increased computational burden



K-fold Cross-Validation: Polynomial Regression

I For the polynomial regression problem, we follow these steps

1. Divide the data into K parts
2. For of the K folds k = 1, 2, . . . ,K

2.1 Use the remaining K − 1 parts to fit polynomials of different
order

2.2 Determine the sum-of-squares error using the k part



K-fold Cross-Validation: Polynomial Regression

I The CV error as a function of polynomial order.

I The plot show 95% confidence intervals

I The uncertainty around P = 3 is least



Probabilistic Approach

I There are two main steps in data modelling3

1. Assume one of our models is correct and fit model to data,
repeat this for all models

2. Compare the models

I To place the model comparison problem in a probabilistic
setting, under each model Mi , the parameters w are
associated with a prior probability

p(w|Mi )

I For a given model and parameter setting, the probability of a
given dataset D is p(D|w,Mi )

3MacKay, D. J. (1992). Bayesian interpolation. Neural computation, 4(3),
415-447.



Probabilistic Approach

I The first step of inference involves estimating the model
parameters w. Using Bayes’ rule, the posterior is given by

p(w|D,Mi ) =
p(D|w,Mi )p(w|Mi )

p(D|Mi )

I This posterior distribution allows us to perform inference
about the parameters.

I We can compute the Most probable value of w

wMAP = arg max
w

p(w|D,Mi )

I Error bars can be determined from the curvature of the
posterior at this maximum

I In this step the denominator p(D|Mi ) plays no role and is
ignored.



Probabilistic Approach: Model comparison

I The posterior probability of a given model is given by

p(Mi |D) ∝ p(D|Mi )p(Mi )

I Two models can be compared by computing the ratio

p(Mi |D)

p(Mj |D)
=

p(D|Mi )p(Mi )

p(D|Mj)p(Mj)



Probabilistic Approach: Bayes factor

I If we assume that all models are equiprobable, we use the
model evidence p(D|Mi ) to rank the models.

I To compare two models i and j we compute the ratio

Bij =
p(D|Mi )

p(D|Mj)

I If the ratio is greater than one, model i is preferred over
model j

I Bij is known as the Bayes factor.



Evaluating Model Evidence

I To perform model comparison in a Bayesian setting, we must
evaluate the model evidence.

I We must compute the integral

p(D|Mi ) =

∫
p(D|w,Mi )p(w|Mi )dw

I In some cases, this can be performed analytically.

I Otherwise we can use sampling methods.



Evaluating Model Evidence
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Model Comparison in Polynomial Regression

I To illustrate model comparison we return to the polynomial
regression problem

I To proceed we place the problem in a probabilistic setting.

I We have a data set D = {xi , yi}Ni=1 where xi are the input
variables and yi are the target variable.

I We model the target variables as

yi = f (xi ,w) + ε

I ε is zero mean Gaussian noise with variance σ2ε
I w is a vector of model parameters. The polynomial

coefficients.



Model Comparison in Polynomial Regression

I The probability of the data D given the parameters for a given
model Mi is

p(D|w, β,Mi ) =
( β

2π

)N/2
exp

(
− β

2

N∑
i=1

(f (xi ,w)− yi )
2
)

where β = 1
σ2
ε

is the noise precision

I Here we make the dependance on the model explicit.

I Different models correspond to different polynomial order.



Model Comparison in Polynomial Regression

I p(D|w, β,Mi ) is known as the likelihood and we can obtain a
maximum likelihood estimate of the parameters. In practice
we maximize the log likelihood.

I We have

log p(D|w, β,Mi ) =
N

2
log(β)−N

2
log(2π)−β

2

N∑
i=1

(f (xi ,w)−yi )
2

I Maximizing the log likelihood is equivalent to minimising the
sum-of-squares error.



Bayesian Polynomial Regression

I For a Bayesian treatment of the regression problem, we set a
prior over the parameters w

I This prior governs the types of interpolants we will obtain.

I If the magnitudes of the polynomial coefficients are restricted
to small values, the model is inflexible and results in flat
interpolants

I If the coefficients are allowed to be too large, then the model
can be too flexible and oscillate wildly to pass all data points.

I We seek a middle ground



Bayesian Polynomial Regression

I We select the following prior

p(w|α,Mi ) =
( α

2π

)(P+1)/2
exp

(
− α

2
wTw

)
where α is the precision of the coefficients. P is the
polynomial order.

I When α is small, coefficients can take large values

I When α is large, coefficients are assumed to take small values



Bayesian Polynomial Regression - Inference

I The inference step seeks most probable value of w

I The posterior distribution of w is

p(w|D, α, β,Mi ) =
p(D|w, β,Mi )p(w|α,Mi )

p(D|α, β,Mi )

I We can show that this is a Gaussian with

µ = βΣΦy

Σ = [αI + βΦTΦ]−1

Where

Φ =


1 x1 x2

1 . . . xP
1

1 x2 x2
2 . . . xP

2
...

...
...

. . .
...

1 xN x2
N . . . xP

N





Inferred Polynomial

Fit for P = 9, α = 10



Inferred Polynomial

Fit for P = 9, α = 1



Inferred Polynomial

Fit for P = 9, α = 0.001



Bayesian Polynomial Regression- Evaluation of Model
Evidence

I The denominator in the expression for the posterior is the
model evidence and is evaluated by integrating over w

p(D|α, β,Mi ) =

∫
p(D|w, β,Mi )p(w|α,Mi )dw



Evaluation of Model Evidence

I The integral can be evaluated in closed form since both terms
in the integrand are quadratic in w

I Completing the square and using the Gaussian normalizing
coefficient yeilds the evidence4

I We can evaluate it for several values of polynomial order.

I This Bayesian approach uses all the data without the need to
have a separate train and test set

4Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.



Evaluation of Model Evidence

I We see a preference for the polynomial of order 3.



The Bayesian Information Criterion

I We have seen that the Bayes factor comparing two models i
and j is given by

Bij =
p(D|Mi )

p(D|Mj)

I The log marginal likelihood p(D|Mi ) can be approximated
using the Laplace approximation to yeild5

log p(D|Mi ) ≈ log p(D|θ̂ML,Mi )−
di

2
log(N)

where θ̂ML, is the maximum likelihood parameter estimate and
di is the number of free parameters in model Mi

5



The Bayesian Information Criterion

I The Bayesian Information Criterion for a model Mi is defined
as

BICi = −2 log p(D|θ̂ML,Mi ) + di log(N)

I The BIC statistic penalizes complex models

I It includes a penalty term that depends on the number of free
parameters in a model

I We chose the model with the minimum BIC

I This is equivalent to chosing the model with the largest
posterior probability



The Bayesian Information Criterion

I For the polynomial regression problem, the minimum BIC
corresponds to P = 3



Conclusion

I We have seen a number of approaches to model selection

I When we have sufficient data we can hold out some test data
or use cross-validation

I Bayesian approaches provide a principled approach to model
selection but can be computationally intensive

I The Bayesian Information Criterion is a useful approximation
to the model evidence
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