

Ciira Maina

Dedan Kimathi University of Technology

17th June 2015

- In most data science applications we are start off with a large collection of objects which form our data set.
- Clustering is often an initial exploratory operation applied to the data.
- The aim of clustering is the grouping of objects into subsets with closely related objects in the same group or cluster.

Sheep vs. Goats [Source Wikipedia]

Apples vs. Oranges [Source: http://www.microassist.com/]

・ロン ・日 ・ ・ 日 ・

- Clustering has a number of applications such as:
 - Image segmentation for lossy image compression
 - Audio processing applications like diarization and voice activity detection

・ロット (雪) () () () ()

3

- Clustering gene expression data
- Wireless network base station cooperation

- ► Here we will consider a number of clustering algorithms:
 - K-means clustering
 - Gaussian mixture modelling
 - Hierachical clustering

K-means

- ► Given a set of N data points, the goal of K-means clustering is to assign each data point to one of K groups
- Each cluster is characterised by a cluster mean μ_k
 k = 1,..., K
- The data points are assigned to the clusters such that the average dissimilarity of data points in the cluster from the cluster mean is minimized.
- In K-means clustering the dissimilarity is measured using Euclidean distance

 Consider 2D data from two distinct clusters. K-means does a good job of discovering these clusters.

Figure: Data with two distinct clusters

Figure: Result of K-means clustering

K-means, The Theory

- Consider the N data points {x₁,..., x_N} which we would like to partition into K clusters.
- We introduce K cluster centers µ_k k = 1,..., K and corresponding indicator variables r_{n,k} ∈ {0,1} where r_{n,k} = 1 if x_n belongs to cluster k.
- The objective function is the sum of square distances of the data points to assigned cluster centers. That is

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{n,k} ||\mathbf{x}_{n} - \mu_{k}||^{2}$$

K-means, The Theory

1. The K-means algorithm proceeds iteratively. Starting with an initial set of cluster centers, the variables $r_{n,k}$ are determined.

$$r_{n,k} = \begin{cases} 1 & \text{if } k = \operatorname{argmin}_j ||\mathbf{x}_n - \mu_j||^2 \\ 0 & \text{otherwise} \end{cases}$$

2. In the next step, the cluster centers are updated based on the current assignment

$$\mu_k = \frac{\sum_n r_{n,k} \mathbf{x}_n}{\sum_n r_{n,k}}$$

3. Step 1 and 2 are repeated until the assignment remains unchanged or the relative change in *J* is small.

Figure: Data with two distinct clusters

Figure: Randomly initialize the cluster centers

Figure: Assign data points to cluster centers

Figure: Recompute cluster centers

Figure: Assign data points to cluster centers

Figure: Recompute cluster centers

- ► To determine when to stop K-means, we monitor the cost function *J*.
- In this case, 3 iterations are sufficient

э

イロト イポト イヨト イヨト

K-means, Image compression Example

- K-means clustering can be used in image compression using vector quantization.
- This algorithm takes advantage of the fact that several nearby pixels of an image often appear the same.
- The image is divided into blocks which are then clustered using K-means.
- The blocks are then represented using the centroids of the clusters to which they belong.

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

3

K-means, Image compression Example

- In this example we start with a 196-by-196 pixel image of Mzee Jomo Kenyatta
- ► We divide the image into 2-by-2 blocks and treat these blocks as vectors in R⁴
- These vectors are clustered with K = 100 and K = 10
- The resulting image shows degradation but uses fewer bytes for storage

Figure: Original Image

Figure: VQ with 100 classes

K-means, Image compression Example

- The original image requires $196 \times 196 \times 8$ bits.
- ► To store the cluster to which each 2 × 2 block belongs to we require log₂(K) bits
- To store the cluster centers we need $K \times 4$ real numbers
- ► The total storage for the compressed image is log₂(K) × #blocks = log₂(K) × ^{196²}/₄
- When K = 10, we can compress the image to $\frac{\log_2(10)}{32} = 0.103$ of its original size

K-means, Practical Issues

- 1. To avoid local minima we should have multiple random initializations.
- 2. Initial cluster centers chosen randomly from the data points.
- 3. Choosing K- Elbow method.

Gaussian Mixture Models

- So far we have considered situations where each data point is assigned to only one cluster.
- This is sometimes referred to as hard clustering
- In several cases it may be more approriate to consider assigning each data point a probability of membership to each cluster.

イロト 不得 トイヨト イヨト

э

- This is soft clustering
- Gaussian Mixture Models are useful for soft clustering

Gaussian Mixture Models

- GMMs are ideal for modelling continuous data that can be grouped into distinct clusters.
- For example consider a speech signal which contains regions with speech and other regions with silence
- We could use a GMM to decide which category a certain segment belongs to.

- Voice activity detection is a useful signal processing application
- It involves deciding whether a speech segment is speech or silence
- We divide the speech into short segments and compute the logarithm of the energy of each segment.
- We see that the log energy shows distinct clusters.

A single Gaussian does not fit the data well

Two Gaussians do a better job

Are three Gaussians even better?

イロト イ押ト イヨト イヨト

 The Gaussian distribution function for a 1D variable is given by

$$p(x) = \frac{1}{\sqrt{(2\pi\sigma^2)}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

- The distribution is governed by two parameters
 - The mean μ
 - The variance σ²
- The mean determines where the distribution is centered and the variance determines the spread of the distribution around this mean.

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

3

- The Gaussian density can not be used to model data with more than one distinct 'clump' like the log energy of the speech frames.
- Linear combinations of more than one Gaussian can capture this structure.
- These distributions are known as Gaussian Mixture Models (GMMs) or Mixture of Gaussians

The GMM density takes the form

$$p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \sigma_k)$$

• π_k is known as a mixing coefficient. We have

$$\sum_{k=1}^{K} \pi_k = 1$$

and $0 \le \pi_k \le 1$

A GMM with three mixture components

◆□> ◆□> ◆三> ◆三> ● 三 のへの

- The mixing coefficients can be viewed as the prior probability of the components of the mixture
- We can then use the sum and product rules and write

$$p(x) = \sum_{k=1}^{K} p(k) p(x|k)$$

Where

 $p(k) = \pi_k$

and

$$p(x|k) = \mathcal{N}(x|\mu_k, \sigma_k)$$

- ► Given an observation x, we will be interested to compute the posterior probability of each component that is p(k|x)
- We use Bayes' rule

$$p(k|x) = \frac{p(x|k)p(k)}{p(x)}$$
$$= \frac{p(x|k)p(k)}{\sum_{i} p(x|i)p(i)}$$

We can use this posterior to build a classifier

Gaussian Mixture Models, Learning the model

▶ Given a set of observations X = {x₁, x₂,..., x_N} where the observations are assumed to be drawn independently from a GMM, the log likelihood function is given by

$$\ell(\theta; \mathbf{X}) = \sum_{n=1}^{N} \log \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(x_i | \mu_k, \sigma_k) \right\}$$

where $\theta = \{\pi_1, \dots, \pi_K, \mu_1, \dots, \mu_K, \sigma_1^2, \dots, \sigma_K^2\}$ are the parameters of the GMM.

 To obtain a maximum likelihood estimate of the parameters, we use the expectation maximization (EM) algorithm

(日) (四) (日) (日) (日)

Gaussian Mixture Models, Returning to the VAD Example

- In the VAD example we use the implementation of EM in scikit-learn.
- We can then compute the posterior probability of all segments belonging to the component with the highest mean.
- Segments where this probability is greater than a threshold can be classified as speech.

Gaussian Mixture Models, Returning to the VAD Example

(日)

- An approach to clustering that yields a hierarchy of clusters.
- Clusters in one level of the hierarchy are formed by merging clusters in the lower level.
- At the lowest level of the hierarchy each datum is in its own cluster.

Source: mikethechickenvet.wordpress.com

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Source: http://guestblog.scientopia.org/

- There are two main stategies:
 - Agglomerative (bottom-up): Start with each item as a cluster and succeccively merge clusters
 - Divisive (top-down): Start with all items in one cluster and recursively divide one of the exisiting clusters into two.

Agglomerative Clustering

- In agglomerative we begin with each data point in a singleton cluster.
- At each step the two closest clusters are merged.
- We must specify a measure of dissimilarity between the clusters. This will be problem specific
- ► If there are N data points there will be N 1 steps. At each step there is one less cluster.

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

3

Agglomerative Clustering-Measures of Dissimilarity

- If C₁ and C₂ are two clusters, the dissimilarity between them is denoted d(C₁, C₂) and is based on the pairwise dissimilarity of items in each of the clusters.
- Let $d_{ii'}$ be the dissimilarity between $i \in C_1$ and $i' \in C_2$.
- We can define the dissimilarity between the clusters in different ways
 - Single linkage:

$$d(\mathcal{C}_1,\mathcal{C}_2)=\min_{i\in\mathcal{C}_1,i'\in\mathcal{C}_2}d_{ii'}$$

Complete linkage:

$$d(\mathcal{C}_1, \mathcal{C}_2) = \max_{i \in \mathcal{C}_1, i' \in \mathcal{C}_2} d_{ii'}$$

Average linkage:

$$d(\mathcal{C}_1,\mathcal{C}_2) = rac{1}{|\mathcal{C}_1||\mathcal{C}_2|}\sum_{i\in\mathcal{C}_1}\sum_{i'\in\mathcal{C}_2}d_{ii'}$$

э

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Consider the dataset in the figure below

The first step is to compute pair-wise dissimilarity between the objects and find the closest pair of clusters. Here we use Euclidean distance

	0	1	2	3	4	5
0	-	0.902	0.262	2.21	3.085	2.696
1		-	1.035	2.605	3.192	2.977
2			-	1.951	2.85	2.443
3				-	1.176	0.563
4					-	0.662
5						-

• Merge $\{0\}$ and $\{2\}$ to form a new cluster $\{0,2\}$

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

► We then compute the distance between this new cluster and the remaining clusters **using single linkage**

	{0,2}	1	3	4	5
{0,2}	-	0.902	1.951	2.85	2.696
1		-	2.605	3.192	2.977
3			-	1.176	0.563
4				-	0.662
5					-

(日)、(四)、(E)、(E)、(E)

▶ Merge {3} and {5} to form a new cluster {3,5}

 The process of finding the pair of clusters with least dissimilarity is repeated.

	{0,2}	$\{3, 5\}$	1	4
{0,2}	-	1.951	0.902	2.85
$\{3, 5\}$		-	2.605	0.662
1			-	3.192
4				-

• Merge $\{3,5\}$ and $\{4\}$ to form a new cluster $\{3,4,5\}$

► Then...

	{0,2}	$\{3,4,5\}$	1
{0,2}	-	1.951	0.902
$\{3, 4, 5\}$		-	2.605
1			-

• Merge $\{1\}$ and $\{0,2\}$ to form a new cluster $\{0,1,2\}$

Agglomerative Clustering-A dendogram

- We can use a dendogram to give a pictorial representation of the clustering.
- A node whose daughters are the merged clusters is formed at a height equal to the dissimilarity between the clusters.

- We may want to cluster sections of audio according to 'who spoke when'
- This is known as audio diarization.
- We begin by detecting change points in the audio to form initial clusters.
- ▶ We the perform agglomerative clustering on the initial clusters

・ロト ・聞 と ・ 聞 と ・ 聞 と

э

- This example shows a recording of bird sounds with vocalisation from two species
- The data set was used in the 2013 Machine Learning for Signal Processing (MLSP) competition and is freely available¹

¹https://www.kaggle.com/c/mlsp-2013-birds/data 🔿 🔖 🧃 🛼

We perform change point detection to discover initial clusters of sound segments.

-

- Perform agglomerative clustering on this initial set of clusters to discover segments of audio produced by the same species.
- Code to reproduce the results is available on Github (https://github.com/ciiram/BirdPy)

Conclusion

We have covered three main methods of clustering

- K-means clustering
- Gaussian mixture modelling
- Hierachical clustering
- We have demonstrate the use of clustering in
 - Image compression
 - Voice activity detection
 - Audio Diarization

In the talks we will consider clustering of gene sequence data

イロト 不得 トイヨト イヨト

э.

Conclusion

- Bishop, C. M. (2006). Pattern recognition and machine learning. springer.
- MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge university press.
- Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1). Springer, Berlin: Springer series in statistics.

Thank You

