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Introduction

I In most data science applications we are start off with a large
collection of objects which form our data set.

I Clustering is often an initial exploratory operation applied to
the data.

I The aim of clustering is the grouping of objects into subsets
with closely related objects in the same group or cluster.



Introduction

Sheep vs. Goats [Source Wikipedia]



Introduction

Apples vs. Oranges [Source: http://www.microassist.com/]

http://www.microassist.com/


Introduction

I Clustering has a number of applications such as:
I Image segmentation for lossy image compression
I Audio processing applications like diarization and voice activity

detection
I Clustering gene expression data
I Wireless network base station cooperation



Introduction

I Here we will consider a number of clustering algorithms:
I K-means clustering
I Gaussian mixture modelling
I Hierachical clustering



K-means

I Given a set of N data points, the goal of K-means clustering
is to assign each data point to one of K groups

I Each cluster is characterised by a cluster mean µk
k = 1, . . . ,K

I The data points are assigned to the clusters such that the
average dissimilarity of data points in the cluster from the
cluster mean is minimized.

I In K-means clustering the dissimilarity is measured using
Euclidean distance



K-means, Example

I Consider 2D data from two distinct clusters. K-means does a
good job of discovering these clusters.
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Figure: Data with two distinct
clusters
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Figure: Result of K-means
clustering



K-means, The Theory

I Consider the N data points {x1, . . . , xN} which we would like
to partition into K clusters.

I We introduce K cluster centers µk k = 1, . . . ,K and
corresponding indicator variables rn,k ∈ {0, 1} where rn,k = 1
if xn belongs to cluster k .

I The objective function is the sum of square distances of the
data points to assigned cluster centers. That is

J =
N∑

n=1

K∑
k=1

rn,k ||xn − µk ||2



K-means, The Theory

1. The K-means algorithm proceeds iteratively. Starting with an
initial set of cluster centers, the variables rn,k are determined.

rn,k =

{
1 if k = argminj ||xn − µj ||2
0 otherwise

2. In the next step, the cluster centers are updated based on the
current assignment

µk =

∑
n rn,kxn∑
n rn,k

3. Step 1 and 2 are repeated until the assignment remains
unchanged or the relative change in J is small.



K-means, Example
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Figure: Data with two distinct
clusters
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Figure: Randomly initialize the
cluster centers



K-means, Example
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Figure: Assign data points to
cluster centers
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Figure: Recompute cluster centers



K-means, Example
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Figure: Assign data points to
cluster centers
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Figure: Recompute cluster centers



K-means, Example

I To determine when to stop K-means, we monitor the cost
function J.

I In this case, 3 iterations are sufficient
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K-means, Image compression Example

I K-means clustering can be used in image compression using
vector quantization.

I This algorithm takes advantage of the fact that several nearby
pixels of an image often appear the same.

I The image is divided into blocks which are then clustered
using K-means.

I The blocks are then represented using the centroids of the
clusters to which they belong.



K-means, Image compression Example
I In this example we start with a 196-by-196 pixel image of

Mzee Jomo Kenyatta
I We divide the image into 2-by-2 blocks and treat these blocks

as vectors in R4

I These vectors are clustered with K = 100 and K = 10
I The resulting image shows degradation but uses fewer bytes

for storage

Figure: Original Image
Figure: VQ with 100
classes

Figure: VQ with 10
classes



K-means, Image compression Example

I The original image requires 196× 196× 8 bits.

I To store the cluster to which each 2× 2 block belongs to we
require log2(K ) bits

I To store the cluster centers we need K × 4 real numbers

I The total storage for the compressed image is
log2(K )×#blocks = log2(K )× 1962

4

I When K = 10, we can compress the image to log2(10)
32 = 0.103

of its original size



K-means, Practical Issues

1. To avoid local minima we should have multiple random
initializations.

2. Initial cluster centers chosen randomly from the data points.

3. Choosing K - Elbow method.



Gaussian Mixture Models

I So far we have considered situations where each data point is
assigned to only one cluster.

I This is sometimes referred to as hard clustering

I In several cases it may be more approriate to consider
assigning each data point a probability of membership to each
cluster.

I This is soft clustering

I Gaussian Mixture Models are useful for soft clustering



Gaussian Mixture Models
I GMMs are ideal for modelling continuous data that can be

grouped into distinct clusters.
I For example consider a speech signal which contains regions

with speech and other regions with silence
I We could use a GMM to decide which category a certain

segment belongs to.
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Gaussian Mixture Models, VAD Example
I Voice activity detection is a useful signal processing

application
I It involves deciding whether a speech segment is speech or

silence
I We divide the speech into short segments and compute the

logarithm of the energy of each segment.
I We see that the log energy shows distinct clusters.
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Gaussian Mixture Models, VAD Example

I A single Gaussian does not fit the data well
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Gaussian Mixture Models, VAD Example

I Two Gaussians do a better job
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Gaussian Mixture Models, VAD Example

I Are three Gaussians even better?
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Gaussian Mixture Models, Theory

I The Gaussian distribution function for a 1D variable is given
by

p(x) =
1√

(2πσ2)
exp

{
− 1

2σ2
(x − µ)2

}
I The distribution is governed by two parameters

I The mean µ
I The variance σ2

I The mean determines where the distribution is centered and
the variance determines the spread of the distribution around
this mean.



Gaussian Mixture Models, Theory
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Gaussian Mixture Models, Theory

I The Gaussian density can not be used to model data with
more than one distinct ‘clump’ like the log energy of the
speech frames.

I Linear combinations of more than one Gaussian can capture
this structure.

I These distributions are known as Gaussian Mixture Models
(GMMs) or Mixture of Gaussians



Gaussian Mixture Models, Theory

I The GMM density takes the form

p(x) =
K∑

k=1

πkN (x |µk , σk)

I πk is known as a mixing coefficient. We have

K∑
k=1

πk = 1

and 0 ≤ πk ≤ 1



Gaussian Mixture Models, Theory

I A GMM with three mixture components
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Gaussian Mixture Models, Theory

I The mixing coefficients can be viewed as the prior probability
of the components of the mixture

I We can then use the sum and product rules and write

p(x) =
K∑

k=1

p(k)p(x |k)

I Where
p(k) = πk

and
p(x |k) = N (x |µk , σk)



Gaussian Mixture Models, Theory

I Given an observation x , we will be interested to compute the
posterior probability of each component that is p(k |x)

I We use Bayes’ rule

p(k|x) =
p(x |k)p(k)

p(x)

=
p(x |k)p(k)∑
i p(x |i)p(i)

I We can use this posterior to build a classifier



Gaussian Mixture Models, Learning the model

I Given a set of observations X = {x1, x2, . . . , xN} where the
observations are assumed to be drawn independently from a
GMM, the log likelihood function is given by

`(θ;X) =
N∑

n=1

log
{ K∑

k=1

πkN (xi |µk , σk)
}

where θ = {π1, . . . , πK , µ1, . . . , µK , σ21, . . . , σ2K} are the
parameters of the GMM.

I To obtain a maximum likelihood estimate of the parameters,
we use the expectation maximization (EM) algorithm



Gaussian Mixture Models, Returning to the VAD Example

I In the VAD example we use the implementation of EM in
scikit-learn.

I We can then compute the posterior probability of all segments
belonging to the component with the highest mean.

I Segments where this probability is greater than a threshold
can be classified as speech.



Gaussian Mixture Models, Returning to the VAD Example
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Hierachical Clustering

I An approach to clustering that yields a hierarchy of clusters.

I Clusters in one level of the hierarchy are formed by merging
clusters in the lower level.

I At the lowest level of the hierarchy each datum is in its own
cluster.



Hierachical Clustering

Source: mikethechickenvet.wordpress.com

mikethechickenvet.wordpress.com


Hierachical Clustering

Source: http://guestblog.scientopia.org/

http://guestblog.scientopia.org/


Hierachical Clustering

I There are two main stategies:
I Agglomerative (bottom-up): Start with each item as a cluster

and succeccively merge clusters
I Divisive (top-down): Start with all items in one cluster and

recursively divide one of the exisiting clusters into two.



Agglomerative Clustering

I In agglomerative we begin with each data point in a singleton
cluster.

I At each step the two closest clusters are merged.

I We must specify a measure of dissimilarity between the
clusters. This will be problem specific

I If there are N data points there will be N − 1 steps. At each
step there is one less cluster.



Agglomerative Clustering-Measures of Dissimilarity

I If C1 and C2 are two clusters, the dissimilarity between them is
denoted d(C1, C2) and is based on the pairwise dissimilarity of
items in each of the clusters.

I Let dii ′ be the dissimilarity between i ∈ C1 and i ′ ∈ C2.
I We can define the dissimilarity between the clusters in

different ways
I Single linkage:

d(C1, C2) = min
i∈C1,i ′∈C2

dii ′

I Complete linkage:

d(C1, C2) = max
i∈C1,i ′∈C2

dii ′

I Average linkage:

d(C1, C2) =
1

|C1||C2|
∑
i∈C1

∑
i ′∈C2

dii ′



Agglomerative Clustering-Example

I Consider the dataset in the figure below
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Agglomerative Clustering-Example

I The first step is to compute pair-wise dissimilarity between
the objects and find the closest pair of clusters. Here we use
Euclidean distance

0 1 2 3 4 5

0 - 0.902 0.262 2.21 3.085 2.696
1 - 1.035 2.605 3.192 2.977
2 - 1.951 2.85 2.443
3 - 1.176 0.563
4 - 0.662
5 -

I Merge {0} and {2} to form a new cluster {0, 2}



Agglomerative Clustering-Example

I We then compute the distance between this new cluster and
the remaining clusters using single linkage

{0, 2} 1 3 4 5

{0, 2} - 0.902 1.951 2.85 2.696
1 - 2.605 3.192 2.977
3 - 1.176 0.563
4 - 0.662
5 -

I Merge {3} and {5} to form a new cluster {3, 5}



Agglomerative Clustering-Example

I The process of finding the pair of clusters with least
dissimilarity is repeated.

{0, 2} {3, 5} 1 4

{0, 2} - 1.951 0.902 2.85
{3, 5} - 2.605 0.662

1 - 3.192
4 -

I Merge {3, 5} and {4} to form a new cluster {3, 4, 5}



Agglomerative Clustering-Example

I Then...

{0, 2} {3, 4, 5} 1

{0, 2} - 1.951 0.902
{3, 4, 5} - 2.605

1 -

I Merge {1} and {0, 2} to form a new cluster {0, 1, 2}



Agglomerative Clustering-A dendogram

I We can use a dendogram to give a pictorial representation of
the clustering.

I A node whose daughters are the merged clusters is formed at
a height equal to the dissimilarity between the clusters.
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Agglomerative Clustering-Application to Audio Diarization

I We may want to cluster sections of audio according to ‘who
spoke when’

I This is known as audio diarization.

I We begin by detecting change points in the audio to form
initial clusters.

I We the perform agglomerative clustering on the initial clusters



Agglomerative Clustering-Application to Audio Diarization

I This example shows a recording of bird sounds with
vocalisation from two species

I The data set was used in the 2013 Machine Learning for
Signal Processing (MLSP) competition and is freely available1

1https://www.kaggle.com/c/mlsp-2013-birds/data

https://www.kaggle.com/c/mlsp-2013-birds/data


Agglomerative Clustering-Application to Audio Diarization

I We perform change point detection to discover initial clusters
of sound segments.



Agglomerative Clustering-Application to Audio Diarization

I Perform agglomerative clustering on this initial set of clusters
to discover segments of audio produced by the same species.

I Code to reproduce the results is available on Github
(https://github.com/ciiram/BirdPy)



Conclusion

I We have covered three main methods of clustering
I K-means clustering
I Gaussian mixture modelling
I Hierachical clustering

I We have demonstrate the use of clustering in
I Image compression
I Voice activity detection
I Audio Diarization

I In the talks we will consider clustering of gene sequence data



Conclusion
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